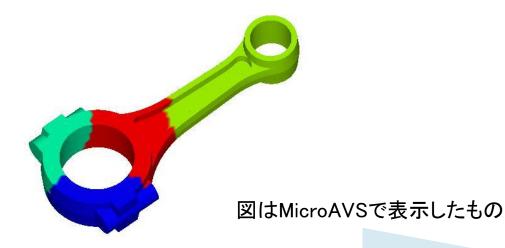
ハンズオン 全体の手順

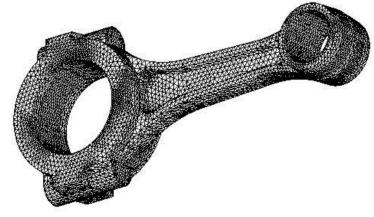
2013年6月26日 第4回Front ISTR研究会

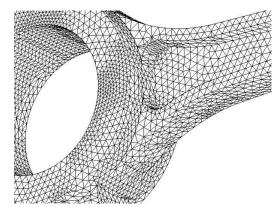
手順

(前提)

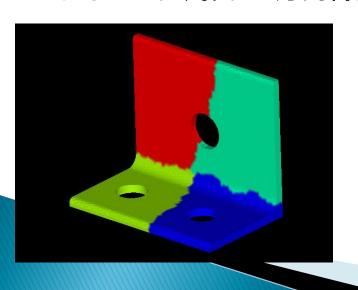

- 計算サーバー(tc)へのログイン、ファイル転送ができる状態になっている
- FrontISTRは計算サーバーにインストール済み
- 計算実行に必要な入力ファイルやジョブスクリプトは準備済み
- (1) 例題説明
- (2) tcおけるFrontISTRのインストール環境の確認
- (3) 各種入力ファイル、ジョブスクリプトの説明
 - FrontISTR、領域分割モジュール(パーティショナ)の実行に必要な各種ファイル

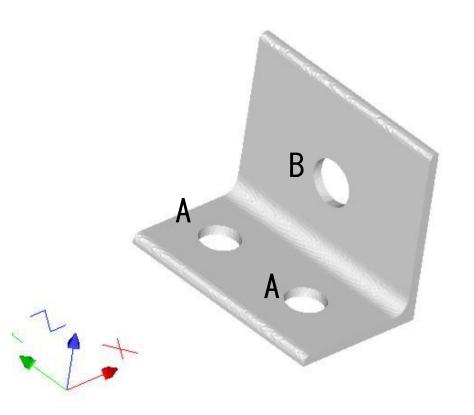
(4) 各例題について以下を繰り返す

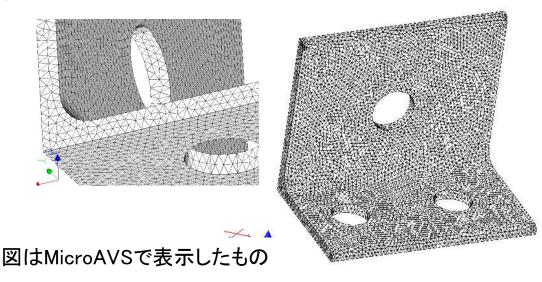

- 入力ファイル、ジョブスクリプトの確認
- 逐次解析
- 領域分割(パーティショニング)
- 並列解析 加速率の計測などを含む
- REVOCAP_PrePostでの可視化 各種可視化機能の試行を含む


例題説明(1)

- トモデル名 conrod コネクションロッド
 - ∘ 94,047節点 56,115要素
 - 。四面体2次要素
 - 全長 L=235mm
- ▶ 解析種別
 - 。 線形弾性静解析/固有値解析
- ▶ 境界条件(静解析)
 - 大穴部の内周面を変位拘束
 - 小穴部の内周面にδ y=1.0mm強制変位





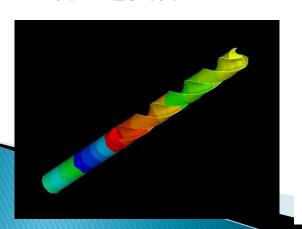


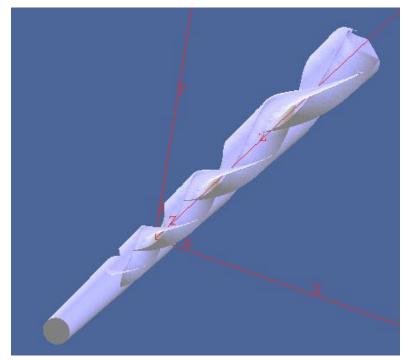
例題説明(2)

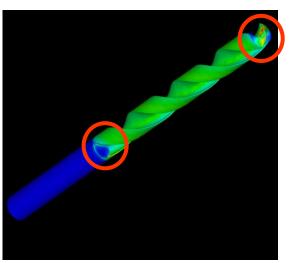
- トモデル名 hinge ヒンジ
 - ▶ 84,056節点 49,871要素
 - 。四面体2次要素
- ▶ 解析種別
 - 。 線形弾性静解析/固有値解析
- ▶ 境界条件(静解析)
 - 円孔Aの内周面を変位拘束
 - 。 円孔Bの内周面にx方向荷重負荷

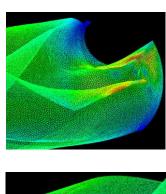
例題説明(3)

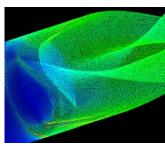
トモデル名 drill ドリル


- ∘ 1,700,262節点 9,895,566要素
- 。四面体1次要素
- 。 JIS B-4301 (type 6.1mm) (直径 6.1mm, 長さ 101mm, 溝長63mm)


▶ 解析種別


。 線形弾性静解析


▶ 境界条件


- 。 軸部を変位拘束
- 刃先から3節点程度まで偶力と軸 方向荷重を負荷

図はMicroAVSで表示したもの

tcにおけるFront ISTRのインストール環境、関連ファイル

実行モジュール

- /usr/local/fistr/bin/4.2/fistr1.serial 逐次版FrontISTR
- 。 /usr/local/fistr/bin/4.2/fistr1.openmpi 並列版FrontISTR
- ✓ /usr/local/fistr/bin/4.2/hecmw_part1.serial パーティショナ

ジョブスクリプト

- ∘ run_fistr.sh FrontISTRの実行スクリプト
- run_part.sh 領域分割モジュール(パーティショナ)の実行スクリプト

▶ FrontISTR入力ファイル

- 全体制御データ hecmw_ctrl.dat (固定名)
- 。 単一領域メッシュデータ foo.msh
- 解析制御データ foo.cnt
- ◎ 領域分割制御データ hecmw_part_ctrl.dat(固定名)

run_fistr.sh FrontISTRの実行スクリプト

逐次計算

```
#!/bin/sh
/usr/local/fistr/bin/4. 2/fistr1. serial
```

実行モジュール名(逐次版)

並列計算

```
#!/bin/sh
/usr/local/openmpi-1.4.1-intel64-v11.1.064/bin/mpirun
-np 4 -machinefile machines /usr/local/fistr/bin/4.2/
fistr1.openmp
```

実行モジュール名

PBSを用いずに、machinefileで並列計算に用いるノードを記述している例。

run_part. sh パーティショナの実行スクリプト

```
#!/bin/sh
/usr/local/fistr/bin/4. 2/hecmw_part1. serial
```

実行モジュール名

run_fistr.sh FrontISTRの実行スクリプト(参考)

並列計算 PBS(ジョブ投入システム)の利用例

本日のハンズオンではPBSは用いません

```
#!/bin/sh
#PBS -q parallel
#PBS - I nodes=4:ppn=12
                            Portable Batch System (PBS)
#PBS -| walltime=12:00:00
                            の違いなど、計算機環境で異なる
#PBS -o fistr.log
#PBS -e fistr.log
cd $PBS_0_WORKDIR →ステージインする計算機環境では指定しない
export OMP NUM THREADS=1
date > time.log
mpirun -np 48 ~/FrontI\STR/bin/fistr1 >& log
date >> time.log
```

BLAS、Intel MKLなどでは利用可能な最大スレッド数で動作するため、必ず指定した方がよい

130626用データの情報(配布データに無い情報を含む)

モデル名	解析種別	PE数	CG反復	CPU(s)	
Conrod NP 94,047 NE 56,115 四面体2次	弾性	1	840	151	
		4	842	35	
	固有値	1		3, 160	ソルバ18回
		4		810	ソルバ18回
hinge NP 84, 056 NE 49, 871 四面体2次	弾性	1	2, 079	252	
		4	2, 089	72	
	固有値	1		5, 434	ソルバ18回
		4		1, 343	ソルバ19回
drill NP 1, 700, 262 NE 9, 895, 566 四面体1次	弾性	1	20, 576	9, 756	
		2	20, 845	7, 379	
		4	18, 514	3, 071	
		8	18, 258	1, 414	
		16	17, 497	928	
		48	16. 960	419	
drill_tet2 NP 13,533,593 NE 9,895,566 四面体1次	弾性	1	51, 049	371, 692	
		16	43, 323	21, 425	
		48	42, 711	10, 512	