ハンズオン 全体の手順

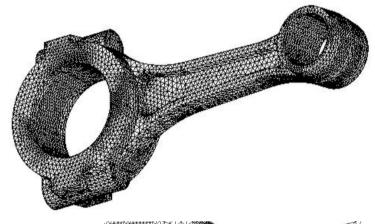
2014年9月19日 第14回Front ISTR研究会

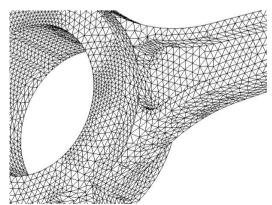
手順

(前提)

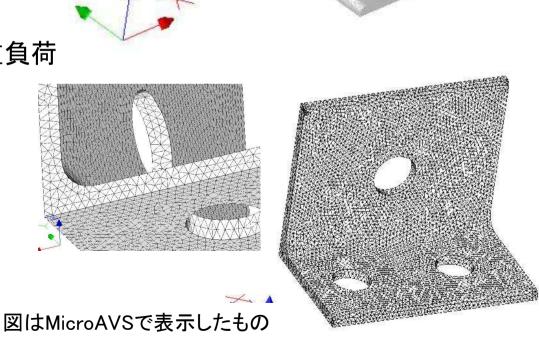
- 。 計算サーバー(tc)へのログイン、ファイル転送ができる状態になっている
- FrontISTRは計算サーバーにインストール済み
- 計算実行に必要な入力ファイルやジョブスクリプトは準備済み
- (1) 例題説明
- (2) tcおけるFrontISTRのインストール環境の確認
- (3) 各種入力ファイル、ジョブスクリプトの説明
 - ∘ FrontISTR、領域分割モジュール(パーティショナ)の実行に必要な各種ファイル

(4) 各例題について以下を繰り返す


- 入力ファイル、ジョブスクリプトの確認
- 逐次解析
- 領域分割(パーティショニング)
- 並列解析 加速率の計測などを含む
- REVOCAP_PrePostでの可視化 各種可視化機能の試行を含む


例題説明(1)

- トモデル名 conrod コネクションロッド
 - ∘ 94,047節点 56,115要素
 - 。 四面体2次要素
 - 全長 L=235mm
- ▶ 解析種別
 - 。 線形弾性静解析/固有値解析
- ▶ 境界条件(静解析)
 - 。 大穴部の内周面を変位拘束
 - 。 小穴部の内周面にδ y=1.0mm強制変位

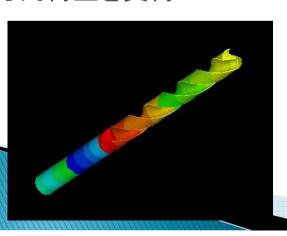


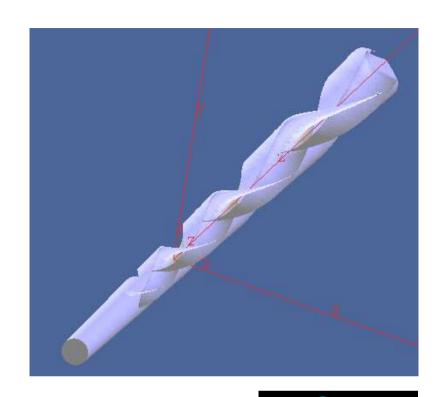
例題説明(2)

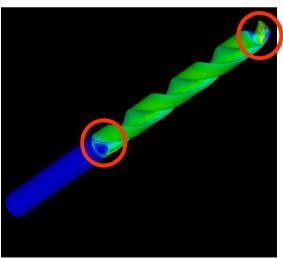
- トモデル名 hinge ヒンジ
 - ▶ 84,056節点 49,871要素
 - 。 四面体2次要素
- ▶ 解析種別
 - 。 線形弾性静解析/固有値解析
- ▶ 境界条件(静解析)
 - 。 円孔Aの内周面を変位拘束
 - 。 円孔Bの内周面にx方向荷重負荷

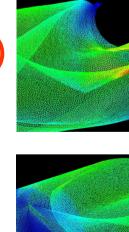
例題説明(3)

トモデル名 drill ドリル


- 1,700,262節点 9,895,566要素
- 。四面体1次要素
- 。 JIS B-4301 (type 6.1mm) (直径 6.1mm, 長さ 101mm, 溝長63mm)


▶ 解析種別


。 線形弾性静解析


▶境界条件

- 。軸部を変位拘束
- 刃先から3節点程度まで偶力と軸 方向荷重を負荷

tcにおけるFront ISTRのインストール環境、関連ファイル

実行モジュール

- bin/serial/fistr1 逐次版FrontISTR
- bin/mpi/fistr1 並列版FrontISTR
- bin/serial/hecmw_part1 パーティショナ

ジョブスクリプト

- ∘ run_fistr.sh FrontISTRの実行スクリプト
- run_part.sh 領域分割モジュール(パーティショナ)の実行スクリプト

▶ FrontISTR入力ファイル

全体制御データ hecmw_ctrl.dat(固定名)

単一領域メッシュデータ foo.msh

解析制御データ foo.cnt

。領域分割制御データ hecmw_part_ctrl.dat (固定名)

run_fistr.sh FrontISTRの実行スクリプト

逐次計算

```
#!/bin/sh
cp ../../../bin/serial fistr1.
./fistr1 > fistr1.log
```

並列計算

```
#!/bin/sh
cp ../../../bin/mpi/fistr1.
/usr/local/openmpi-1.4.1-intel64-v11.1.064/bin/mpirun
-np 4 -machinefile machines ./fistr1 > fistr1.log
```

PBSを用いずに、machinefileで並列計算に用いるノードを記述している例。

run_part. sh パーティショナの実行スクリプト

```
#!/bin/sh
cp ../../../bin/serial/hecmw_part1.
./hecmw_part1 > hecmw_part1.log
```

run_fistr.sh FrontISTRの実行スクリプト(参考)

並列計算 PBS(ジョブ投入システム)の利用例

本日のハンズオンではPBSは用いません

```
#!/bin/sh
#PBS -q parallel
#PBS -I nodes=4:ppn=12
                          Portable Batch System (PBS)
#PBS -| walltime=12:00:00
                          の違いなど、計算機環境で異なる
#PBS -o fistr.log
#PBS -e fistr.log
cd $PBS_0_WORKDIR →ステージインする計算機環境では指定しない
export OMP_NUM_THREADS=1
date > time.log
mpirun -np 48 ~/FrontI$TR/bin/fistr1 >& log
date >> time. log
                   BLAS、Intel MKLなどでは利用可能な最大スレッ
                   ド数で動作するため、必ず指定した方がよい
```

実行時間の目安(tc)(配布データに無い情報を含む)

モデル名	解析種別	PE数	CG反復	CPU(s)	
conrod NP 94,047 NE 56,115 四面体2次	弾性	1	840	151	
		4	842	35	
	固有値	1		3, 160	ソルバ18回
		4		810	ソルバ18回
hinge NP 84,056	弾性	1	2, 079	252	
		4	2, 089	72	
NE 49, 871 四面体2次	固有値	1		5, 434	ソルバ18回
四面体2次		4		1, 343	ソルバ19回
	弾性	1	20, 576	9, 756	
		2	20, 845	7, 379	
drill NP 1,700,262 NE 9,895,566 四面体1次		4	18, 514	3, 071	
		8	18, 258	1, 414	
		16	17, 497	928	
		48	16. 960	419	
drill_tet2 NP 13,533,593 NE 9,895,566 四面体1次	弾性	1	51, 049	371, 692	
		16	43, 323	21, 425	
		48	42, 711	10, 512	

実行時間の目安(神戸大FX10)

モデル名	解析種別	PE数	CG反復	CPU(s)	
conrod NP 94, 047 NE 56, 115 四面体2次	弾性	1	840	310	
		4	842	62	
		16	843	21	
		64	1105	11	
	固有値	1		5240	ソルバ19回
		4		1434	ソルバ20回
		16		410	ソルバ20回
		64		166	ソルバ20回
	熱伝導	1	710	42	
		4	705	12	
		16	705	4. 7	

実行時間の目安

モデル名	解析種別	PE数	CG反復	CPU(s)	
hinge NP 84, 056 NE 49, 871 四面体2次	弾性	1	7525	428	
		4	7521	118	
		16	7522	38	
		64	7522	18	
	固有値	1		5240	ソルバ19回
		8		716	ソルバ19回
		128		129	ソルバ20回
	熱伝導	1	227	41	
		4	227	12	
		16	233	4. 6	

実行時間の目安

モデル名	解析種別	PE数	CG反復	CPU(s)	
drill NP 1, 700, 262 NE 9, 895, 566 四面体1次	弾性	1	20778	18849	
		4	18077	4486	
		16	17291	1357	
		64	16582	399	
		256	16574	194	
	固有値	16		18671	ソルバ15回
		256		2659	ソルバ15回
		512		1485	ソルバ15回
		1024		916	ソルバ15回