FrontISTRが容易に操作できる EasyISTRの紹介 (第2回)

EasyISTRについて
 1-1. 作成の考え方
 1-2. プリ、ソルバ、ポスト構成図
 1-3. 構造解析の例(線形性解析)
 1-4. その他の構造解析
 前回からの機能アップ内容
 まとめ

1. EasyISTRについて

1-1. 作成の考え方

- ・windows、linuxとも動作し、インストールが容易。 使用言語としてコンパイルの必要がないpythonを選択
- ・プリ、ソルバ、ポストともOpenSourceで構築。 システム全体としてライセンスの縛りがなく、 配布が可能。
- ・メッシュは、汎用性のあるunv形式が使える。 Salomeでunv形式のメッシュが作成可能。
- ・結果可視化としてParaView(OpenSource)を使用
- ・直感的に操作できる様、GUI(EasyISTR)を作成する。
 線形、非線形解析(接触、弾塑性)、時刻歴応答
 固有値解析、周波数応答、定常非定常熱伝導解析などが解析できる

1-2. プリ、ソルバ、ポスト構成図

FrontISTRとEasyISTRのファイル構成

1-3. 構造解析の例(線形性解析)1-3-1. solidモデル、メッシュ作成(Salomeを使用)

1-3-2. 解析用folderを設定(EasyISTR起動)

😣 — 🗆 EasyISTR: tes	st	
	EasyISTR for FrontISTR (ver 2.22-160910)	
設定項目 ▼ FrontISTR analysis FistrModel.msh 解析の種類 ▶ 材料物性値 ▶ 境界条件 時間変化 ステップ解析 ▶ solver	EasyISTR ver 2.22-160910 for FrontISTR 作業用folder /home/caeuser/CAE/CAE-FrontISTR/plateAnalysis 參照	
post	制御file選択 <u>fistrModel_master.cnt</u> 選択>> 選択>>	ː「plate.unv」が lderに移動する。
<基本的 設定項目	な操作方法> しを選択し、その内容を設定する。	

1-3-3. メッシュ変換

 ○ □ EasyISTR: pla 設定項目 ▼ FrontISTR analysis FistrModel.msh 	ateAnalysis EasyISTR for メッシュ変換 O unv2fistr ファイル名:	」ボタンでファイルを指定し、 レ変換」でメッシュ変換する。 2fistrを選択するとabaqusのinpが変換できる)
解析の種類 ▶ 材料物性値 ▶ 境界条件 時間変化 ステップ解析	スケール変更 倍率: 1.0	倍率変更
▶ solver post	メッシュ内容 modelSize(xyz): 0.1 0.02 0.005 nodes 1731 elements type:341 5468 EGRP plate 5468 SGRP otherS 2954 NGRP fix 40 NGRP load 36	変換したメッシュ内容 ● 要素Grp: plate 物性値を設定 節点Grp: fix 固定 ● 節点Grp: load 荷重を設定
folder開< 制御fi	ile編集 meshFile編集 端末起動	folder内クリア 閉じる

1-3-4. 解析内容を設定

1-3-5. 材料物性値を設定 (要素Grp:「plate」に設定)

😸 🗆 🗆 EasyISTR: plat	teAnalysis								
EasyISTR for FrontISTR (ver 2.22-160910)									
設定項目		****	物料店の到	v.					
▼ FrontISTR analysis		みいこ オオキ	公夕	ない記士					
FistrModel.msh	「竹杵UD」	いら内々	子白	ど迭れ	τ				
解析の種類	大様12 Aluminum ▲ 物性店の確認 大様1005を開く								
▼ 材料物性値	初种石: Atuminum		* 1 271±1	但177年高品	「たち」の「日」へ				
plate	材料物性值								
▶ 境界条件	材料モデル	ELASTIC		。 3醒 扣	した オオ 半	の物性症			
時間変化	降伏条件/タイプ			送扒	して当る	りが江道			
ステップ解析	硬化則			✓ 材料(の物性値				
▶ solver				- 121-11					
post	板厚の設定 (shell)		_		材料DB内の Alu	uminum の物性値			
Ξ	板厚:	厚さ方向	積分点数						
	heamの設定				youngs	7000000000			
	参考軸方向	断面藉	断百		poisson	0.345			
	×4±m√161	area	Tvv		density	2690			
		ar ca.			linearexp	0.000025			
	vy:		122:						
	vz:								
						08(0)			
	BAE								
folder開< 制御fil	e編集 meshFile編集	端末起動		folder内尔	フリア 閉じる				

1-3-6. 境界条件を設定(節点Grp:「fix」を固定)

設定項目	EasyISTR for Fro	ntISTR (ver 2.22-160910) BOUNDARY (節点・変位拘束)の設定		
FrontISTR analysis FistrModel.msh 解析の種類 ▶ 材料物性値 ▼ 境界条件 ▼ BOUNDARY (変位)	-group名:fix 変位 ダ x 0.0 ダ y 0.0 ダ z 0.0	回転 (shellのみ) Rx Ry Rz		
CLOAD (荷重) DLOAD (圧力) VLOAD (体積力) GRAV (重力)	設定	節点:fix を固定 xyz をチェック	し、全て変位「(〕を入力
CENT (遠心力) TEMPERATURE (温度 SPRING (バネ要素) CONTACT (接触)				
FLOAD (周期荷重) VELOCITY (速度) ACCELERATION (加)				
INITIAL (初期温度 FIXTEMP (温度固定				

1-3-7. 荷重を設定 (節点Grp:「load」に荷重を設定)

1-3-8. 計算開始(FrontISTR:fistr1を起動)

🙁 — 💷 EasyISTR: pla	teAnalysis	
	EasyISTR for FrontISTR (ver 2.22-160910)	
設定項目 ▼ FrontISTR analysis FistrModel.msh 解析の種類 ▶ 材料物性値 ▶ 境界条件 時間変化 ステップ解析 又テップ解析 した りま	solverの設定 並列処理の設定 並列処理の設定 メッシュ分割 実行(シングル、並列処理共) iterationLog出力 耐 timeLog出力 結果出力頻度1 restartの制御: ③途中stepから開始する 実行ファイル: fistr1 設定 FrontISTR実行」ボタ クリックして計算開始	マンを
folder開く制御fi	le編集 meshFile編集 端末起動 folder内クリア 閉じる	

1-3-9. 計算結果の確認

1-4. その他の構造解析

EasyISTR操作マニュアル(ver 2.21)に解析方法の記載あり

線形静解析 接触解析 弾塑性解析 固有値解析 周波数応答解析 周波数応答解析 熱伝導解析(定常) 熱伝導解析(非定常) シェルの解析

EasyISTR操作マニュアル

. 応用事例	J					•••	• • •								•					
4-1. 接触	解析						•••	•••				•••	•••	•••	•••			•••		•••
4-1-1.	モデル	形状					•••			•••	•••	•••	•••	•••		•••				•••
4-1-2.	変位拘	東の	接触	解析	i		•••			•••	•••	•••	•••	•••		•••				•••
4-1-3.	荷重((圧力))拘	束の)接	主	秭	f:	弱	U)	ば	ね	追	加		•••				•••
4-2. 弾塑	性解析						•••	•••				•••	•••	•••				•••		•••
4-2-1.	モデル	形状	(円)	柱)			•••			•••	•••	•••	•••	•••		•••				•••
4-2-2.	圧縮2	0%の言	₩算.			•••		•••	•••		•••				•			•		•••
4-2-3.	引き続	き引	張20	ቆወ	計算	ŧ.,		•••	•••						•			•		•••
4-3. 固有	値解析						•••	•••			•••	•••	•••	•••	•••	•	•••	•••		•••
4-3-1.	モデル	形状					•••			•••	•••	•••	•••	•••	•••	•••	•••	•••	•	•••
4-3-2.	固有値	酮析	の開	始			•••	• • •		•••	•••	•••	•••	•••	•••	•••	•••	•••	•	•••
4-4. 周波	数応答	解析.					•••	•••			•••	•••	•••	•••	•••	•	•••	•••		•••
4-4-1.	モデル	形状					•••	• • •		•••	•••	•••	•••	•••	•••	•••	•••	•••	•	•••
4-4-2.	周波数	応答	解析	の開)始.		•••			•••	•••	•••	•••	•••	•••	•••		•••		•••
4-5. 時刻	歴応答	解析.					•••	•••			•••	•••	•••	•••	•••	•		•••		•••
4-5-1.	モデル	形状					•••			•••	•••	•••	•••	•••	•••	•••		•••		•••
4-5-2.	境界条	件一	定値	(纊	肥	۰ß	影解	注	.)	•••	•••	•••	•••			•		•••		•••
4-5-3.	境界条	件に	時間	変化	を	与え	रेड	5 (編	形	•	陽	解	法)	•		•••		•••
4-6. 熱応	力解析							•••					•••					•••		•••
4-6-1.	モデル	形状					•••			•••	•••	•••	•••	•••	•••	•		•••	•	•••
4-6-2.	熱応力	解析	の開	始			•••			•••	•••	•••	•••	•••	•••	•		•••	•	•••
4-7. 熱伝	導解析	(静靜	解析)				•••	•••			•••	•••	•••	•••	•••	•		•••		•••

シェル解析

固有値解析(固有振動数と変形モード)

周波数応答(共振特性) 1.00E-02 8.00E-03 Ē 6.00E-03 ち 4.00E-03 2.00E-03 0.00E+00 200 1000 1200 0 400 600 800 周波数(Hz)

2. 前回からの機能アップ内容

前回(15/12/21)は、インストール方法が主体で報告。 今回、前回からの機能アップ点を紹介。

- 1) 等分布荷重の設定が可能
- 2) shell要素の解析が可能
- 3) shell、solidの混在要素の解析が可能
- 4) abaqus(calculix)の境界条件が変換可能
- 5) 節点、要素の番号や座標がGUIで確認できる

2-1. 等分布荷重の設定

圧力の設定と異なり、各方向に設定が可能。 1次、2次要素の三角形面、四角形面、線分で設定可能。

2-2. shell要素の解析

shellの1次要素(731,741)で解析可能。 (線分に対して等分布荷重を設定。)

2-3. shell、solidの混在モデルの解析

19/23

設定項目		材料物状体の設定					
▼ FrontISTR analysis		初科物性恒的設定					
FistrModel.msh 解析の種類 ▼ 材料物性値 solid	材料物性値の設定 elGroup名:shell 材料名: Aluminum 材料物性値	€物性値の確認	材料DBを開く				
shell	材料モデル	ELASTIC	↓ 塑性(plastic)data				
▶ 境界条件 時間変化	降伏条件/タイプ 硬化則		◆ SS_data 作成・編集				
ステッノ解析 ▶ solver post	板厚の設定(shell) 板厚:5.0 厚さ方向積分点数:5						
	_beamの設定						

メッシュ変換(unv → fistr)時に、回転角を伝達させる「!EQUATION」を 作成するので、混在モデルを意識することなく、solidとして解析できる。 solid:1次要素(341,361)、shell:1次要素(761,781)のみ解析可能。

2-4. abaqus(calculix)のinpファイル変換

メッシュ変換のみだったが、境界条件も変換が可能。

	設定項目 ▼ FrontISTR analysis FistrModel.msh 解析の種類	メッシュ変換 〇 unv2fistr ファイル名:	参照
Aba	qus	FrontISTR	操作対象
*BO *CL *DL P G C	UNDARY OAD OAD 1~P6 RAV ENTRIF	!BOUNDARY、 !FI> !CLOAD !DLOAD P1∼P6 GRAV CENT	(TEMP 節点 節点 要素
*SP *IN *TE *CF	RING ITIAL CONDIT: MPERATURE LUX	!SPRING IONS !INITIAL CONDIT !TEMPERATURE !CFLUX	節点 「ION 節点 (温度のみ) 節点 節点 節点

メッシュの変換と共に、上記内容が変換できる。

2-5. 節点、要素の番号や座標の確認

file変換(fistr → vtk)時に、nodeNo, elementNoのfieldを 作成しているので、その値をparaViewで確認できる。

確認したい要素、節点を選択する。

paraView上で要素No、節点No、座標が確認できる。

3. まとめ

Windows、Linux環境で動作させることができる。 Windows: DEXCS-WinXistr Linux: DEXCS2015-RDstr-64.iso

以下のwebで公開

http://opencae.gifu-nct.ac.jp/pukiwiki/index.php?AboutEasyISTR