東京大学本郷キャンパス 工学部8号館 84講義室 (地下1階)

アセンブリ・接触問題に対する FrontISTRの並列線形ソルバー について

2016年11月28日 第32回FrontISTR研究会 <FrontISTRによる接触解析における機能拡張と計算事例>

本研究開発は、文部科学省ポスト「京」 重点課題⑧「近未来型ものづくりを先導する 革新的設計・製造プロセスの開発」の 一環として実施したものです。

発表内容

1. はじめに

- ポスト「京」プロジェクトとの関係
- 接触問題に対する線形ソルバー
- 2. 接触問題に対する並列線形ソルバーの性能評価
 - 目的
 - 検証問題に対する並列反復法/並列直接法の性能評価
 - 並列反復法と並列直接法の比較
- 3. アセンブリ/接触問題に対する並列線形ソルバーの動作検証
 - 目的
 - 並列反復法/並列直接法の修正箇所および動作検証
 - 並列反復法と並列直接法の比較
- 4. おわりに
 - 現状のまとめ
 - 今後の課題

発表内容

1. はじめに

- ポスト「京」プロジェクトとの関係
- 接触問題に対する線形ソルバー
- 2. 接触問題に対する並列線形ソルバーの性能評価
 - 目的
 - 検証問題に対する並列反復法/並列直接法の性能評価
 - 並列反復法と並列直接法の比較
- 3. アセンブリ/接触問題に対する並列線形ソルバーの動作検証
 - 目的
 - 並列反復法/並列直接法の修正箇所および動作検証
 - 並列反復法と並列直接法の比較
- 4. おわりに
 - 現状のまとめ
 - 今後の課題

ポスト「京」プロジェクトとの関係 (1/3)

ポスト「京」重点課題⑧サブ課題Eのホームページ http://www.multi.k.u-tokyo.ac.jp/PostK-8E/

文部科学省 フラッグシップ2020プロジェクト

ポスト「京」重点課題⑧「近未来型ものづくりを先導する革新的設計・製造プロセスの開発」 サブ課題E「新材料に対応した高度成形・溶接シミュレータの研究開発」

プロジェクト概要

高度溶接シミュレーション技術を開発し、溶接工程における溶接順序探索および逆ひずみ量推定の高精度化・高速化を行うことが目的である。平成29年度までの達成目標として、入熱による熱弾塑性解析の計算精度を検証し、数mmのオーダーの溶融条件を考慮した大規模並列計 算性能を検証する。平成31年度までの達成目標として、ターゲット問題における部品規模の 溶接解析の計算精度を従来アプリと比較し、開発するアプリの優位性を示す。そして、全体規 模の溶接解析結果を実験値と比較し、開発するアプリの予測精度を検証する。

サブ課題責任者:奥田洋司教授(東京大学大学院新領域創成科学研究科)

ポスト「京」プロジェクトとの関係 (2/3)

超大規模・高精度強連成解析ソルバー ✓ アセンブリノ接触問題の大規模解析が可能な並列反復法: 自動車ノ重機械フレーム全体に存在する溶融部の解析 数m規模の解析領域に対して、数µmの解像に必要な要素数 =数千億~数兆要素(メッシュの粗密あり) 「京」では1日で十億要素の静解析が限界 ✓ 大規模強連成解析手法(熱伝導・弾塑性クリープ変形): 支配方程式系を一括して計算、材料構成則も整備 「京」では1日で数億要素規模の弱連成解析でも不可能 ✓ プレス成形時のスプリングバックの影響を考慮した溶接解析: ューザは一連の工程を解析可能なプリポストプロセッサを利用 従来は、プレス成形時のスプリングバックによる残留応力を無視

6

ポスト「京」プロジェクトとの関係 (3/3)

1 2 3 4 約 溶接順序: 2→3→1→4

従来のソフトウェアを用いた現場での予測と比較して、 溶接隙間量を小さくできる溶接順序、逆ひずみ量を 高精度に高速に予測

接触問題に対する線形ソルバー (1/3)

本発表で扱うのはLagrange未定乗数法の場合のみです

8

接触問題に対する線形ソルバー (2/3)

接触問題に対する線形ソルバー (3/3)

- ▶ 接触問題に対する並列反復法ソルバー
 - 陽的自由度消去法を使用

- 分散領域メッシュを入力
- 接触ペアは一つの分散領域に存在
- ▶ 接触問題に対する並列直接法ソルバー
 - 並列直接法ソルバー「MUMPS」を使用
 - 単一領域メッシュを入力
 - FrontISTRプログラム内のパーティショナで領域分割
 - 接触ペアは複数の分散領域に存在

※第21回FrontISTR研究会の講演資料「接触問題向け反復法線形ソルバーの 解説と適用事例」および第23回FrontISTR研究会の講演資料 「FrontISTRによる並列接触解析のプログラム解説(Ver.4.4)」をご覧ください 10

発表内容

1. はじめに

- ポスト「京」プロジェクトとの関係
- 接触問題に対する線形ソルバー
- 2. 接触問題に対する並列線形ソルバーの性能評価
 - 目的
 - 検証問題に対する並列反復法/並列直接法の性能評価
 - 並列反復法と並列直接法の比較
- 3. アセンブリ/接触問題に対する並列線形ソルバーの動作検証
 - 目的
 - 並列反復法/並列直接法の修正箇所および動作検証
 - 並列反復法と並列直接法の比較
- 4. おわりに
 - 現状のまとめ
 - 今後の課題

目的

使用した並列線形ソルバー

- 直接法ソルバー (MUMPS)
- 前処理 (SSOR, 対角スケーリング, ILU(0), ILU(1), ILU(2), ML)付き反復法ソルバー (CG, BiCGSTAB)

※ FrontISTRで利用できる線形ソルバーや前処理は 第26回FrontISTR研究会の講演資料「FrontISTRの線形ソルバー と前処理」をご覧ください.

使用した計算機

- CPU: Intel Xeon Processor X5690 12M Cache, 3.46 GHz
- 12コア

摩擦伝動ベルト解析 (1/4)

従動プーリをx方向に12mm動かした結果(荷重ステップ12)

Newton-Raphson反復と計算時間(逐次計算)

使用した 線形ソルバー	使用した 前処理	Newton-Raphson 反復の収束状況	Newton- Raphson反復数	全計算時間 (sec)	線形ソルバーの 計算時間の 平均値 (sec)
	SSOR	接触後から収束せず			
	対角 スケーリ ング	最初から収束せず			
	ILU(0)	接触後から収束せず			
	ILU(1)	最初から収束せず			
BiCGSTAB	ILU(2)	接触後に収束せず			
	ML	荷重ステップ12まで 収束	77	43537.85	565.43
MUMPS		荷重ステップ12まで 収束	63	2953.45	46.88
(参考) Intel MKL Pardiso		荷重ステップ12まで 収束	63	3110.17	49.38 17

摩擦伝動ベルト解析 (4/4)

従動プーリをx方向に20mm動かした結果(荷重ステップ20)

Newton-Raphson反復と計算時間(並列計算)

使用した 線形ソルバー	並列数	Newton-Raphson 反復の収束状況	Newton- Raphson反 復数	全計算時間 (sec)	線形ソルバー の計算時間の 平均値 (sec)	加速率	
	1	荷重ステップ12まで 収束	77	43537.85	565.43	1.0	
ML+BiCGST AB	2	荷重ステップ10まで 収束	77	31406.1	407.87	1.39	
	4	荷重ステップ12まで 収束	83	15700.69	189.16	2.99	
	1	荷重ステップ20まで 収束	115	5350.1	46.52	1.0	
	2	荷重ステップ20まで 収束	115	2985.88	25.96	1.86	
MUMPS	4	接触後に通信 不具合発生					
	6	荷重ステップ20まで 収束	115	1417.01	12.32	3.93	
	8	荷重ステップ20まで 収束	115	1225.0	10.65	4.55	20

2軸2輪車両モデルとレールの摩擦接触解析 (2/4)

時間刻み2.0×10⁻⁴ secで時間5.0×10⁻² secまで計算した結果 (時間ステップ250)

Newton-Raphson反復と計算時間(逐次計算)

使用した 線形ソルバー	前処理	Newton-Raphson 反復の収束状況	Newton- Raphson反復数	全計算時間 (sec)	線形ソルバー の計算時間の 平均値 (sec)
	SSOR	時間ステップ250 まで収束	1013	118893.32	117.37
	対角スケーリ ング	時間ステップ250 まで収束	1013	119580.92	118.05
DICCSTAD	ILU(0)	時間ステップ250 まで収束	1013	72599.98	71.67
BICOSTAB	ILU(1)	最初から収束せ ず			
	ILU(2)	時間ステップ250 まで収束	1015	29857.11	29.42
	ML	時間ステップ250 まで収束	1014	21566.03	21.27
MUMPS		時間ステップ250 まで収束	1013	6652.92	6.56

2軸2輪車両モデルとレールの摩擦接触解析 (4/4)

Newton-Raphson反復と計算時間(並列計算)

使用した 線形ソルバー	並列数	Newton-Raphson 反復の収束状況	Newton-Raphson 反復数	全計算時間 (sec)	線形ソルバー の計算時間の 平均値 (sec)	加速率
	1	時間ステップ250 まで収束	1014	21566.03	21.27	1.0
ML+BiCGSTAB	2	時間ステップ250 まで収束	1013	13965.6	13.79	1.54
	4	時間ステップ250 まで収束	1016	30744.98	30.26	0.7
	1	時間ステップ250 まで収束	1013	6652.92	6.56	1.0
MUMPS	2	時間ステップ250 まで収束	1013	3638.56	3.59	1.83
	4	時間ステップ250 まで収束	1013	2012.15	1.99	3.3 24

スマートフォンケースの3点曲げ解析 (1/2)

荷重ステップ40の計算結果

Newton-Raphson反復と計算時間(逐次計算)

使用した 線形ソルバー	前処理	Newton-Raphson 反復の収束状況	Newton- Raphson反復数	全計算時間 (sec)	線形ソルバー の計算時間の 平均値 (sec)
	SSOR	接触後に線形ソルバー 残差NaN			
	対角スケー リング	Diverged due to indefinite preconditioner			
CG	ILU(0)	接触後に線形ソルバー の残差がNaN			
	ILU(1)	接触後に線形ソルバー 残差NaN			
	ILU(2)	ERROR: Divide by zero in ILU setup			
	ML	荷重ステップ40まで収束	372	21723.28	58.40
MUMPS		荷重ステップ40まで収束	356	2995.91	8.42
(参考) Intel MKL Pardiso		[Error] was detected in phase 33-4			25

発表内容

1. はじめに

- ポスト「京」プロジェクトとの関係
- 接触問題に対する線形ソルバー
- 2. 接触問題に対する並列線形ソルバーの性能評価
 - 目的
 - 検証問題に対する並列反復法/並列直接法の性能評価
 - 並列反復法と並列直接法の比較
- 3. アセンブリ/接触問題に対する並列線形ソルバーの動作検証
 - 目的
 - 並列反復法/並列直接法の修正箇所および動作検証
 - 並列反復法と並列直接法の比較
- 4. おわりに
 - 現状のまとめ
 - 今後の課題

目的

並列直接法の修正箇所(1/4)

- ➢ FrontISTRのMPC条件は単一領域メッシュファイル*.mshの !EQUATIONデータカードで定義
- ➢ MPC条件の節点の接続情報を全体行列プロファイルに 反映させるため、単一領域メッシュファイルを読み込むとき HECMWのI/Oルーチンによって拘束される自由度間の関係 から900番台のリンク要素を作成

$$\mathbf{B}_{i}^{\mathrm{T}} \mathbf{u} = \mathbf{c}_{i}$$
 (*i* = 1, 2,, *n*_{MPC})

 $b_1 u_x^2 + b_2 u_x^5 + b_3 u_y^6 = c$

節点2と節点5のリンク要素:要素タイプ911 節点2と節点6のリンク要素:要素タイプ912 節点5と節点6のリンク要素:要素タイプ912

▶ 900番台のリンク要素の節点コネクティビティからグラフ作成

並列直接法の修正箇所 (2/4)

(a) 従来の分散領域メッシュの作成

(b) MPC条件の情報を入れた分散領域メッシュの作成

グラフ作成および分散領域メッシュ作成

並列直接法の修正箇所 (3/4)

接触解析に対する並列直接法ソルバーでは、 ペナルティ法によってMPC条件を導入

$${}^{(m)}\mathbf{u} = {}^{(m-1)}\mathbf{u} + {}^{(m)}\Delta\mathbf{u}$$
$$({}^{(m-1)}\mathbf{K} + \underline{\mu}\mathbf{B}^{\mathrm{T}}\mathbf{B}){}^{(m)}\Delta\mathbf{u} = \mathbf{f}{}^{n+1} - ({}^{(m-1)}\mathbf{q} + \underline{\mu}\mathbf{B}^{\mathrm{T}}{}^{(m-1)}\mathbf{g}_{\mathrm{MPC}})$$
$${}^{(m-1)}\mathbf{g}_{\mathrm{MPC}} = \mathbf{B}{}^{(m-1)}\mathbf{u} - \mathbf{c}$$

並列直接法の修正箇所 (4/4)

使用した計算機

- CPU: Intel(R) Xeon(R) E5-2667 v2 (25M Cache, 3.30 GHz)
- 16コア
- メモリ容量:128GB

並列直接法の動作検証(4/4)

荷重ステップ10の計算結果

逐次計算と並列計算の計算時間および加速率 (使用した線形ソルバー: MUMPS)

並列数	全計算時間 (sec)	線形ソルバーの 計算時間の 平均値 (sec)	加速率
1	1681.50	7.28	1.0
2	1010.34	4.37	1.664
4	653.06	2.88	2.575
8	476.78	2.06	3.527
16	380.75	1.65	4.416

並列反復法の修正箇所

並列反復法の動作検証(1/4)

荷重ステップ40の計算結果

Newton-Raphson反復と計算時間(逐次計算)

使用した 線形ソルバー	前処理	Newton-Raphson 反復の収束状況	Newton-Raphson 反復数	全計算時間 (s)	線形ソルバー の計算時間の 平均値 (sec)
	SSOR	荷重ステップ40 まで収束	695	41,873	60.2
	対角スケー リング	荷重ステップ40 まで収束	695	51,090	73.5
	ILU(0)	線形ソルバーが 収束せず,発散			
CG	ILU(1)	線形ソルバーが収 束しないNewton- Raphson反復もあ るが、荷重ステッ プ40までに収束さ せることは可能	712	143,498	201.5
	ILU(2)	荷重ステップ40 まで収束	702	23,164	33.0
	ML	荷重ステップ40 まで収束	712	11,669	16.4
MUMPS		荷重ステップ40 まで収束	691	2,741	4.0 39

並列反復法の動作検証 (2/4)

荷重ステップ40の計算結果 Newton-Raphson反復と計算時間(並列計算)

(a) SSOR+CG

	Newton-		計算全体				
並列数	Raphson	計算時間	加速率	並列化	計算時間	加速率	並列化
	反復数	(sec)	加还平	効率 (%)	(sec)	加还华	効率 (%)
1	695	41,873	1.00	100	60.25	1.00	100
2	694	28,715	1.46	73	41.38	1.46	73
4	694	15,987	2.62	65	23.04	2.62	65
8	694	7,987	5.24	66	11.51	5.24	65

(b) 対角スケーリング+CG

	Newton-	計算全体			線形ソルバー (平均値)		
並列数	Raphson 反復数	計算時間 (sec)	加速率	並列化 効率 (%)	計算時間 (sec)	加速率	並列化 効率 (%)
1	695	51,090	1.00	100	73.51	1.00	100
2	695	27,653	1.85	92	39.79	1.85	92
4	695	12,427	4.11	103	17.88	4.11	103
8	696	7,309	6.99	87	10.50	7.00	88

並列反復法の動作検証(3/4)

荷重ステップ40の計算結果 Newton-Raphson反復と計算時間(並列計算)

(c) ML+CG

	Newton-		計算全体		線形ソルバー(平均値)			
並列数	Raphson	計算時間	加速率	並列化	計算時間	加速率	並列化	
		(sec)	· · · — ·		(sec)	•		
1	712	11,669	1.00	100	16.39	1.00	100	
2	716	5,892	1.98	99	8.23	1.99	100	
4	716	2,722	4.29	107	3.80	4.31	108	
8	714	1,863	6.26	78	2.61	6.28	79	

発表内容

1. はじめに

- ポスト「京」プロジェクトとの関係
- 接触問題に対する線形ソルバー
- 2. 接触問題に対する並列線形ソルバーの性能評価
 - 目的
 - 検証問題に対する並列反復法/並列直接法の性能評価
 - 並列反復法と並列直接法の比較
- 3. アセンブリ/接触問題に対する並列線形ソルバーの動作検証
 - 目的
 - 並列反復法/並列直接法の修正箇所および動作検証
 - 並列反復法と並列直接法の比較
- 4. おわりに
 - 現状のまとめ
 - 今後の課題

現状のまとめ

- 線形ソルバーの計算時間の平均値を見ると、
 反復法は直接法より、摩擦伝動ベルト解析 (119,798節点)
 では約12倍、2軸2輪車両モデルとレールの摩擦接触解析 (39,233節点) では約3倍、スマートフォンケースの3点曲げ 解析 (47,532節点) では約4倍~約7倍の計算時間を要した.
- プログラムの修正によって、アセンブリ・接触問題に対する 並列反復法ソルバーが動作することが確認された.
- 並列反復法ソルバーでは、現時点では接触ペアを一つの分散 領域メッシュに集める領域分割であるため、並列数の増大に 伴って並列性能が低下する、今回の8並列までの並列計算で は大きな並列性能の低下は見られなかった。

今後の課題

➢ MPC条件付きの大規模接触問題に対して、並列直接 法より

並列反復法が有利であることの確認する. そのため、スマートフォンケースの3点曲げ解析 (47,532節点)を元に、2~3回リファインメントを行った 大規模解析モデルを準備する.

▶ 並列数が多い場合に並列反復法ソルバーの高い並 列性能を得るためには、接触ペアが複数の分散領域 メッシュに存在するような領域分割を行う必要がある。 (CONTACT=AGGREGATEではなく、paracon機能を 使用できるようにする。)