第33回FrontISTR研究会 2017年1月30日(月) 東京大学工学部8号館

FrontISTR可視化ライブラリ利用方法

奥田 洋司, 生野 達大

東京大学大学院新領域創成科学研究科 人間環境学専攻

目次

1. イントロダクション

- 1.2 HEC-MW VIS「並列可視化」とは?
- 1.3 メモリ渡し と ファイル渡し
- 1.4 解析制御ファイル(の可視化部分)の概要
- 1. 5 PSR(Parallel Surface Rendering), PVR (Parallel Volume Rendering)
- 2. PSRのパラメータ設定
- 3. 事例紹介
 - 3.1 最低限のパラメータ設定
 - 3.2 複数画像の出力 フランジモデル,ギヤモデル,バールモデル

付録) 作業環境例, WEB上に各モデルのFEM解析(HEC-MW可視化を 含む)に必要なデータをアップ

HEC-MW VIS 「並列」可視化とは? (1/2)

- •並列FEMの結果を、並列計算機 を用いて、バッチ処理で可視化
- ・解析は非常に大規模で,単一 領域のデータは処理不可能
- 解析結果の分散データ(ファイ ルまたはメモリイメージ)を処理 して、一枚の画像を作成する

HEC-MW VIS 「並列」可視化とは? (2/2)

- •「メモリ渡し」「ファイル渡し」
- ・メモリ渡し(on memory)
 FEM解析に続けて可視化処理
 計算結果と同時に可視化画像
 も出力される
- ファイル渡し(via file)
 FEM解析終了後,いったんファイル出力された計算結果を再度 読み込んで可視化処理

```
:

! WRITE, RESULT

解析結果をファイル出力(「ファイル渡し」のために

必要)

! WRITE, VISUAL

(「メモリ渡し」のために必要)

! VISUAL, method=PSR

(各種の可視化パラメータ)
```

解析制御ファイル (.cnt) の可視化部分

A DO C

239 63 C

PSRの処理の流れ(ファイル渡し)

プログラム内での可視化ライブラリの呼ばれ方

解析制御ファイル(.cnt) 可視化部分の概要

! VISUAL, method=PSR, visual_start_step=2, visual_interval_step=5, visual_end_step=20

引数

- method { PSR, PVR }
- visual_start_step 可視化開始ステップ(default : -1)
- visual_end_step 可視化終了ステップ
- visual_interval_step 可視化ステップ間隔(default: 1)

Parallel Surface Rendering (PSR)

- 境界面
- •等値面
 - 複数面の抽出 - 半透明表示
- ・その他
 - 方程式を用いた指定
 - 断面

断層データにおける等値面と境界面

マントルコアデータにおける 複数枚の等値面と断面

Parallel Volume Rendering (PVR)

- ・適用可能な格子構造
 規則的/階層的/非構造的/複合的
- 高効率
 - ハイブリッド複合並列化 - 動的負荷分散
- 高品質
 豊富な伝達関数の提供

構造格子データのPVR例(地震波動伝搬シミュレーション.データ提供:古村孝史教授)

非構造格子データのPVR例(マントルコア熱 流動シミュレーション)

本日は PSR の事例を紹介します

目次

1. イントロダクション

- 1.2 HEC-MW VIS「並列可視化」とは?
- 1.3 メモリ渡し と ファイル渡し
- 1.4 解析制御ファイル(の可視化部分)の概要
- 1. 5 PSR(Parallel Surface Rendering), PVR (Parallel Volume Rendering)
- 2. PSRのパラメータ設定
- 3. 事例紹介
 - 3.1 最低限のパラメータ設定
 - 3.2 複数画像の出力 フランジモデル,ギヤモデル,バールモデル

付録) 作業環境例, WEB上に各モデルのFEM解析(HEC-MW可視化を 含む)に必要なデータをアップ

PSR のパラメータ設定 (<u>共通(1/2)</u>)

- !surface_num: 抽出する面面の数
- !surface: 新しい面の識別
- !surface_style : 抽出する面のタイプ
- !color_comp_name : 色付けに使用する成分名
- !color_comp: 色付けに使用する成分名のID number
- !color_subcomp : color_comp>1の場合のスカラへの変換法 (subcompnent ID)
- !display_method : 描画方法
- !isoline_number: 等値線の数
- !specified_color: 特定色の指定
- !output_type : 出力ファイルタイプ

PSR のパラメータ設定 (共通(2/2))

!deform_display_on	: 変形表示の有無 変形表示の有無
!deform_comp_nam	e: 変形を指定する際の採用する属性
!deform_comp :	変形を指定する際の変数識別番号
!deform_scale :	変形を表示する際の変位スケール
!initial_style :	初期変形表示のタイプ
!deform_style :	変形後の形状表示スタイル
!initial_line_color :	初期メッシュを表示する際のカラー指定
!deform_line_color :	変形メッシュを表示する際のカラー指定
!deform_num_frame	s: 変形メッシュを表示する際の回転に要するフレーム数

PSR のパラメータ設定 (等値面(surface_style = 2 のとき))

!data_comp_name: 等値面を抽出する要素名

!data_comp : 等値面を抽出する要素名のID number

!data_subcomp : data_comp>1の場合のスカラへの変換法(subcomponent ID)

!iso_value: 抽出する等値面の値

PSR のパラメータ設定 (レンダリングパラメタ(BMP outputのとき))

画像における x方向ピクセル数 !x resolution : 画像における y方向ピクセル数 ly_resolution : !num_of_lights : 光源数 !position_of_lights : 光源の座標 視点の座標 !viewpoint : 注視点の座標 !look_at_point : !up direction : 上方向の座標 環境係数 !ambient coef : 拡散反射係数 !diffuse_coef : 鏡面反射係数 !specular_coef : カラーマッピング方法 !color_mapping_style : カラーマッピング区間数 !interval_mapping_num : !interval_mapping:フィールド区間のフィールド値, RGB 空間の値

!rotate style : アニメーションにおける回転方法 回転に要するフレーム数 !rotate_num_of_frames : カラーバー表示の有無 !color_mapping_bar_on : !scale_marking_on : カラーバーのフィールド値表示の有無 カラーバーのフィールド値表示の数 Inum of scales : カラーマッピングシステムの定義 !color_mapping_system : カラーバーフィールド値のフォントサイズ !font size : カラーバーフォントのRGB値 !font_color : !background_color:背景のRGB値 フィールド範囲値を固定する有無 !fixed_range_on : データ値分布のヒストグラム情報出力有無 !histogram_on : !boundary_line_on: 境界線の有無

目次

1. イントロダクション

- 1.2 HEC-MW VIS「並列可視化」とは?
- 1.3 メモリ渡し と ファイル渡し
- 1.4 解析制御ファイル(の可視化部分)の概要
- 1. 5 PSR(Parallel Surface Rendering), PVR (Parallel Volume Rendering)
- 2. PSRのパラメータ設定
- 3. 事例紹介
 - 3.1 最低限のパラメータ設定
 - 3.2 複数画像の出力 フランジモデル,ギヤモデル,バールモデル

付録) 作業環境例, WEB上に各モデルのFEM解析(HEC-MW可視化を 含む)に必要なデータをアップ

(1) PSR の最低限のパラメータ設定

!VISUAL, method=PSR !surface_num = 1 !surface 1 !output_type = BMP (デフォルトは AVS) !END

- 画像ファイル(.bmp)が出力される
- 他のパラメータはデフォルト値となる
- 境界面表示
- ・ 第1成分が色表示 される

(2)(1)にパラメータ追加

(3)(2)にパラメータ追加

1

0

!color_comp_name = displacement
!color_subcomp_name = norm
!color_comp=1

上から !color_subcomp !color_subcomp

• 表示させる成分の指定

フランジモデル flange (90,106節点,55,043要素,四面体2次要素),1個の制御ファイルで8枚の絵を描画

ギヤモデル gear (58,273節点, 36,311要素, 四面体2次要素), 1個の制御 ファイルで8枚の絵を描画

バールモデル bar (50,300節点, 29,410要素, 四面体1次要素), 1個の制 御ファイルで8枚の絵を描画

この発表のための作業環境 東京大学(奥田研)のPCクラスタ

モデル,計算結果とその配置場所(1/2)

workspace/demo/flange workspace/demo/gear workspace/demo/bar 90,106節点, 55,043要素, 四面体2次 58,273節点, 36,311要素, 四面体2次 50,300節点, 29,410要素, 四面体2次

各ディレクトリ下に計算結果のサブディレクトリ ref0/ ref1/ ref2/ ref0/リファインなし(オリジナル) 4並列で計算 ref1/リファイン1回 8並列で計算 ref2/リファイン2回 16並列で計算

モデル,計算結果とその配置場所(2/2)

配置されているファイルは以下の通り

- hecmw_ctrl.dat
- ・モデル名.{msh, cnt}
- hecmw_part_ctrl.dat
- ・モデル名.inp
- fstrRES/ resファイル
- vis_out/ inpファイル

- 全体制御ファイル
- メッシュファイル,解析制御ファイル
- 領域分割のための制御ファイル
- 領域分割図
- 部分領域ごとに {モデル名}.res.{領域ID}.1
- rmergeで統合した計算結果 {モデル名}.res.1
- ParaView用に, COMPLETE_REORDER_AVSで 出力させた inpファイル

(リファインすると, inpファイル, resファイル共に, 節点, 要素もリファイン後の情報が記載される)

プログラムの配置

/usr/local/FrontISTR_V45/
FrontISTRの実行ファイル(fistr1)
パーティショナ(hecmw_part1)
可視化プログラム(hecmw_vis1)
並列計算時のresファイル統合プログラム(rmerge)

バージョンは2017/01/30時点の最新版

プログラムの実行手順

- 逐次計算 /usr/local/FrontISTR_V45/fistr1
- ・並列計算 ジョブスケジューラを利用する
 job_fistr1.sh FrontISTRを実行するジョブスクリプト
 job_part1.sh パーティショナを実行するジョブスクリプト
 job_vis1.sh 可視化プログラムを実行するジョブスクリプト

ジョブの制御コマンド qsub job_fistr1.sh, qstat, qdel ジョブID, など ログ {p/f}1_{モデル名} R{Refine回数}.{e/o}{ジョブID} part1.log fistr1.log rmerge (hecmw_ctrl.dat のあるディレクトリで) usr/local/FrontISTR_V45/rmerge {モデル名} (fstrRES以下にデータが出力される)

job_fistr1.sh FrontISTRを実行するジョブスクリプト

#!/bin/bash

#PBS -q batch

#PBS -N f1_GearR0

#PBS -I walltime=00:30:00

#PBS -I nodes=1:ppn=4:hc

cd \$PBS_O_WORKDIR

export OMP_NUM_THREADS=1

/usr/mpi/gcc/openmpi-2.0.1/bin/mpirun -machinefile \$PBS_NODEFILE -np \$PBS_NP -x OMP_NUM_THREADS=\$OMP_NUM_THREADS /usr/local/FrontISTR_V45/fistr1 2>&1 | tee fistr1.log

job_vis1.sh 可視化プログラムを実行するジョブスクリプト

#!/bin/bash

#PBS -q batch

#PBS -N f1_GearR0

#PBS -I walltime=00:30:00

#PBS -I nodes=1:ppn=4:hc

cd \$PBS_O_WORKDIR

```
export OMP_NUM_THREADS=1
```

/usr/mpi/gcc/openmpi-2.0.1/bin/mpirun -machinefile \$PBS_NODEFILE -np \$PBS_NP -x OMP_NUM_THREADS=\$OMP_NUM_THREADS /usr/local/FrontISTR_V45/hecmw_vis1 2>&1 | tee vis1.log