
METIS∗
A Software Package for Partitioning Unstructured

Graphs, Partitioning Meshes, and Computing
Fill-Reducing Orderings of Sparse Matrices

Version 4.0

George Karypis and Vipin Kumar

University of Minnesota, Department of Computer Science / Army HPC Research Center
Minneapolis, MN 55455

{karypis, kumar}@cs.umn.edu

September 20, 1998

Metis [MEE tis]: ‘Metis’ is the Greek word for wisdom. Metis was a titaness in Greek mythology. She was the consort
of Zeus and the mother of Athena. She presided over all wisdom and knowledge.

∗METIS is copyrighted by the regents of the University of Minnesota. This work was supported by IST/BMDO through Army Research Office
contract DA/DAAH04-93-G-0080, and by Army High Performance Computing Research Center under the auspices of the Department of the Army,
Army Research Laboratory cooperative agreement number DAAH04-95-2-0003/contract number DAAH04-95-C-0008, the content of which does
not necessarily reflect the position or the policy of the government, and no official endorsement should be inferred. Access to computing facilities
were provided by Minnesota Supercomputer Institute, Cray Research Inc, and by the Pittsburgh Supercomputing Center. Related papers are available
via WWW at URL:http://www.cs.umn.edu/˜karypis

1

Contents

1 Introduction 3

2 What is METIS 4

3 What is New in This Version 6

4 METIS’s Stand-Alone Programs 8
4.1 Graph Partitioning Programs .. 8
4.2 Mesh Partitioning Programs .. 9
4.3 Sparse Matrix Reordering Programs . 11
4.4 Auxiliary Programs . .. 13

4.4.1 Mesh To Graph Conversion . 13
4.4.2 Graph Checker . 14

4.5 Input File Formats 15
4.5.1 Graph File . 15
4.5.2 Mesh File . 16

4.6 Output File Formats . 17
4.6.1 Partition File .. 17
4.6.2 Ordering File . 17

5 METIS’s Library Interface 18
5.1 Graph Data Structure . 18
5.2 Mesh Data Structure . 19
5.3 Partitioning Objectives. 19
5.4 Graph Partitioning Routines .. 21

METIS PartGraphRecursive . 21
METIS PartGraphKway . 22
METIS PartGraphVKway . 23
METIS mCPartGraphRecursive . 24
METIS mCPartGraphKway . 26
METIS WPartGraphRecursive . 28
METIS WPartGraphKway . 30
METIS WPartGraphVKway . 32

5.5 Mesh Partitioning Routines . .. 34
METIS PartMeshNodal . 34
METIS PartMeshDual . 35

5.6 Sparse Matrix Reordering Routines . 36
METIS EdgeND . 36
METIS NodeND . 37
METIS NodeWND . 39

5.7 Auxiliary Routines . .. 40
METIS MeshToNodal . 40
METIS MeshToDaul . 41
METIS EstimateMemory . 42

5.8 C and Fortran Support. 43

6 System Requirements and Contact Information 44

2

1 Introduction

Algorithms that find a good partitioning of highly unstructured graphs are critical for developing efficient solutions for
a wide range of problems in many application areas on both serial and parallel computers. For example, large-scale
numerical simulations on parallel computers, such as those based on finite element methods, require the distribution
of the finite element mesh to the processors. This distribution must be done so that the number of elements assigned
to each processor is the same, and the number of adjacent elements assigned to different processors is minimized.
The goal of the first condition is to balance the computations among the processors. The goal of the second condition
is to minimize the communication resulting from the placement of adjacent elements to different processors. Graph
partitioning can be used to successfully satisfy these conditions by first modeling the finite element mesh by a graph,
and then partitioning it into equal parts.

Graph partitioning algorithms are also used to compute fill-reducing orderings of sparse matrices. These fill-
reducing orderings are useful when direct methods are used to solve sparse systems of linear equations. A good
ordering of a sparse matrix dramatically reduces both the amount of memory as well as the time required to solve
the system of equations. Furthermore, the fill-reducing orderings produced by graph partitioning algorithms are par-
ticularly suited for parallel direct factorization as they lead to high degree of concurrency during the factorization
phase.

Graph partitioning is also used for solving optimization problems arising in numerous areas such as design of very
large scale integrated circuits (VLSI), storing and accessing spatial databases on disks, transportation management,
and data mining.

3

2 What is M ETIS

METIS is a software package for partitioning large irregular graphs, partitioning large meshes, and computing fill-
reducing orderings of sparse matrices. The algorithms inMETIS are based on multilevel graph partitioning described
in [8, 7, 6]. Traditional graph partitioning algorithms compute a partition of a graph by operating directly on the
original graph as illustrated in Figure 1(a). These algorithms are often too slow and/or produce poor quality partitions.

Multilevel partitioning algorithms, on the other hand, take a completely different approach [5, 8, 7]. These algo-
rithms, as illustrated in Figure 1(b), reduce the size of the graph by collapsing vertices and edges, partition the smaller
graph, and then uncoarsen it to construct a partition for the original graph.METIS uses novel approaches to succes-
sively reduce the size of the graph as well as to further refine the partition during the uncoarsening phase. During
coarsening,METIS employs algorithms that make it easier to find a high-quality partition at the coarsest graph. During
refinement,METIS focuses primarily on the portion of the graph that is close to the partition boundary. These highly
tuned algorithms allowMETIS to quickly produce high-quality partitions for a large variety of graphs.

Traditional partitioning algorithms compute
a partition directly on the original graph!

C
oarsening Phase

Initial Partitioning Phase

R
ef

in
em

en
t P

ha
se

Multilevel partitioning algorithms compute a partition
at the coarsest graph and then refine the solution!

(b)

(a)

Figure 1: (a) Traditional partitioning algorithms. (b) Multilevel partitioning algorithms.

The advantages ofMETIS compared to other similar packages are the following:

☞ Provides high quality partitions!
Experiments on a large number of graphs arising in various domains including finite element methods, linear
programming, VLSI, and transportation show thatMETIS produces partitions that are consistently better than
those produced by other widely used algorithms. The partitions produced byMETIS are consistently 10% to
50% better than those produced by spectral partitioning algorithms [1, 4].

☞ It is extremely fast!
Experiments on a wide range of graphs has shown thatMETIS is one to two orders of magnitude faster than other
widely used partitioning algorithms. Figure 2 shows the amount of time required to partition a variety of graphs
in 256 parts for two different architectures, an R10000-based SGI Challenge and a Pentium Pro-based personal
computer. Graphs containing up to four million vertices can be partitioned in 256 parts in well under a minute
on today’s scientific workstations. The run time ofMETIS is comparable to (or even smaller than) the run time
of some geometric partitioning algorithms that often produce much worse partitions.

☞ Provides low fill orderings!
The fill-reducing orderings produced byMETIS are substantially better than those produced by other widely
used algorithms including multiple minimum degree. For many classes of problems arising in scientific compu-
tations and linear programming,METIS is able to reduce the storage and computational requirements of sparse
matrix factorization methods by up to an order of magnitude. Moreover, unlike multiple minimum degree, the
elimination trees produced byMETIS are suited for parallel direct factorization. Furthermore, as Figure 2 illus-
trates,METIS is able to compute these ordering very fast. Matrices with over two hundred thousand rows can be
reordered in just a few seconds on current generation workstations and PCs.

4

METIS's Partitioning Performance

1.57sec

2.10sec

4.00sec

4.42sec

7.79sec

11.32sec

15.76sec

17.81sec

47.34sec

2.55sec

3.79sec

5.87sec

5.96sec

15.12sec

16.95sec

19.40sec

31.11sec

90.45sec

Brack2

Ocean

144

Mdual1

Troll

Auto

Mdual2

Big

Mdual3

MIPS R10000@200MHz Intel PPRO@200MHz

Number of
Vertices

Number of
Edges

Mdual3 4,039,160 8,016,848

Big 295,433 7,953,453

Mdual2 1,017,253 2,015,714

Auto 448,695 3,314,611

Troll 213,453 5,885,829

Mdual1 257,000 505,048

144 144,649 1,074,393

Ocean 143,437 409,593

Brack2 62,631 366,559

METIS's Ordering Performance

0.90sec

2.19sec

2.67sec

3.43sec

3.55sec

3.96sec

5.90sec

10.51sec

13.34sec

1.52sec

3.95sec

3.42sec

4.10sec

6.59sec

6.55sec

11.32sec

20.07sec

24.43sec

Inpro1

BCSSTK30

BCSSTK32

BCSSTK31

PDS-20

KEN18

FORT17

Troll

Ocean

MIPS R10000@200MHz Intel PPRO@200MHz

Number of
Vertices

Number of
Edges

Operation
Count

Ocean 143,437 409,593 1.26e+08

Troll 213,453 5,885,829 5.53e+10

Fort17 86,650 247,424 8.05e+06

Ken18 105,127 252,072 2.85e+08

PDS-20 33,798 143,161 3.82e+09

BCSSTK31 35,588 572,914 1.16e+09

BCSSTK32 44,609 985,046 1.32e+09

BCSSTK30 28,294 1,007,284 1.17e+09

Inpro1 46,949 1,117,809 1.24e+09

Figure 2: The amount of time required by METIS to partition various graphs in 256 parts and the amount of time required by METIS
to compute fill-reducing orderings for various sparse matrices.

The rest of this manual is organized as follows: Section 4 describes the user interface to the stand-alone programs
provided byMETIS. Section 5 describes the stand-alone library that implements the various algorithms implemented
in METIS. Finally, Section 6 describes the system requirements for theMETIS package.

5

3 What is New in This Version

The latest version ofMETIS contains a number of changes over the previous major release (version 3.0). Most of these
changes are concentrated on the graph and mesh partitioning routines and they marginally affect the sparse matrix re-
ordering routines. Table 1 describes which programs and routines ofMETISlib have been changed and the new routines
in METISlib. In the rest of this section we briefly describe some of the major changes.

Multi-Constraint Partitioning METIS now includes partitioning routines that can be used to partition a graph in
the presence of multiple balancing constraints. The idea is that each vertex has a vector of weights of sizem associated
with it, and the objective of the partitioning algorithm is to minimize the edgecut subject to the constraints that each
one of them weights is equally distributed among the domains. For example, if the first weight corresponds to the
amount of computation and the second weight corresponds to the amount of storage required for each element, then
the partitioning computed by the new algorithms will balance both the computation performed in each domain as well
as the amount of memory that it requires. Also, multi-phase (multi-physics) computations can use the new partitioning
algorithm to simultaneously balance the computations performed in each phase. The multi-constraint partitioning
algorithms and their applications are further described in [6].

The multi-constraint partitioning algorithm is implemented by theMETIS mCPartGraphRecursive and
METIS mCPartGraphKway routines that are based on the multilevel recursive bisection and the multilevelk-way
partitioning paradigms, respectively. Also, thepmetis and thekmetis programs have been overloaded to invoke the
multi-constraint partitioner when the input graph contains multiple vertex weights (Section 4.5.1 describes how the
format of the input graph file has been extended to allow you to specify multiple vertex weights).

Minimizing the Total Communication Volume The objective of the traditional graph partitioning problem is
to compute a balancedk-way partitioning such that the number of edges (or in the case of weighted graphs the sum of
their weights) that straddle different partitions is minimized. When partitioning is used to distribute a graph or a mesh
among the processors of a parallel computer, the objective of minimizing the edgecut is only an approximation of the
true communication cost resulting from the partitioning. Despite that, for a wide range of problems, by minimizing
the edgecut, the partitioning algorithms also minimize the communication cost reasonably well.

However, there are cases in which a partitioning algorithm can significantly reduce the communication cost by
directly minimizing this objective (as opposed to the edgecut).METIS now provides theMETIS PartGraphVKway
and METIS WPartGraphVKway routines that directly minimize the communication cost as defined by the total
communication volume resulted by the partitioning (see Section 5.3 for a precise definition of this objective function).
Note that for these routines to provide meaningful partitionings, the connectivity of the graph should reflect the true
information exchange requirements of the underlying computation.

Minimizing the Maximum Connectivity of the Subdomains The communication cost resulting from ak-
way partitioning in general depends on the following factors: (i) the total communication volume, (ii) the maximum
amount of data that any particular processor needs to send and receive; and (iii) the number of messages a processor
needs to send and receive. The partitioning routines in earlier versions ofMETIS concentrated only on the first factor
(by minimizing the edgecut). In this release,METIS also provides support for minimizing the third factor (which
essentially reduces the number of startups) and indirectly (up to a point) reduces the second factor. Experiments have
shown that for most graphs corresponding to finite element meshes, the new release ofMETIS is able to reduce the
maximum (and total) number of adjacent subdomains considerably—especially when the graph is partitioned in a
relatively large number of partitions (e.g., greater than 30). For most 3D finite elements graphs, the maximum number
of subdomains for a 50-way partition has been reduced from around 25 to around 16.

This enhancement is provided as a refinement option for both theMETIS PartGraphKway and
METIS PartGraphVKway routines, and is the default option ofkmetis andMETIS PartGraphKway.

Reducing the Number of Non-Contiguous Subdomains A k-way partitioning of a contiguous graph can
often lead to some subdomains being assigned non-contiguous portions of the graph. For many problems, the non-

6

Changes in M ETIS’s stand-alone programs

pmetis It has been over-loaded to invoke the multi-constraint partitioning algo-
rithm when the graph contains multiple vertex weights.

kmetis It has been over-loaded to invoke the multi-constraint partitioning algo-
rithm when the graph contains multiple vertex weights.
The partitioning algorithm has been modified to also minimize the con-
nectivity of the subdomains.
A pre- and post-refinement step is applied that tries to reduce the number
of non-contiguous subdomains.

partnmesh
partdmesh

The partitioning algorithm has been modified to also minimize the con-
nectivity of the subdomains.

Changes in M ETISlib’s routines

METIS PartGraphKway
METIS WPartGraphKway

A new refinement algorithm has been added that also minimizes the con-
nectivity of the subdomains. This new algorithm has been made the de-
fault option.
A pre- and post-refinement step is applied that tries to reduce the number
of non-contiguous subdomains.

METIS PartGraphVKway
METIS WPartGraphVKway

This is a new set of routines that compute ak-way partitioning whose
objective is to minimize the total communication volume.

METIS mCPartGraphRecursive
METIS mCPartGraphKway

This is a new set of routines that compute ak-way partitioning subject to
multiple balancing constraints.

Table 1: Summary of the changes in METIS and METISlib.

contiguity is a result of the underlying geometry and often leads to better quality partitions. Nevertheless, there are
cases in which the partitioning algorithm is fooled and breaks certain domains.METIS now provides support for
eliminating such spurious non-contiguous subdomains.

This support is provided as a default option for both theMETIS PartGraphKway andMETIS PartGraphVKway
routines, and thekmetis program.

7

4 METIS’s Stand-Alone Programs

METIS provides a variety of programs that can be used to partition graphs, partition meshes, compute fill-reducing
orderings of sparse matrices, as well as programs to convert meshes into graphs appropriate forMETIS’s graph parti-
tioning programs.

The rest of this section provides detailed descriptions about the functionality of these programs, how to use them,
the format of the input files required by them, and the format of the produced output files.

4.1 Graph Partitioning Programs

METIS provides two programspmetis andkmetis for partitioning an unstructured graph intok equal size parts.
The partitioning algorithm used bypmetis is based on multilevel recursive bisection described in [8], whereas the
partitioning algorithm used bykmetis is based on multilevelk-way partitioning described in [7]. Both of these
programs are able to produce high quality partitions. However, depending on the application, one program may be
preferable than the other. In general,kmetis is preferred when it is necessary to partition graphs into more than eight
partitions. For such cases,kmetis is considerably faster thanpmetis . On the other hand,pmetis is preferable
for partitioning a graph into a small number of partitions.

Bothpmetis andkmetis are invoked by providing two arguments at the command line as follows:

pmetis GraphFile Nparts
kmetis GraphFile Nparts

The first argumentGraphFile, is the name of the file that stores the graph (whose format is described in Sec-
tion 4.5.1), while the second argumentNparts, is the number of partitions that is desired. Bothpmetis andkmetis
can partition a graph into an arbitrary number of partitions. Upon successful execution, both programs display statis-
tics regarding the quality of the computed partitioning and the amount of time taken to perform the partitioning. The
actual partitioning is stored in a file namedGraphFile.part.Nparts, whose format is described in Section 4.6.1.

Figure 3 shows the output ofpmetis andkmetis for partitioning a graph into 100 parts. From this figure we
see that both programs initially print information about the graph, such as its name, the number of vertices (#Vertices),
the number of edges (#Edges), and also the number of desired partitions (#Parts). Next, they print some information
regarding the quality of the partitioning. Specifically, they report the number of edges being cut (Edge-Cut) by the
partitioning, as well as the balance of the partitioning1. Finally, bothpmetis andkmetis show the time taken
by the various phases of the algorithm. All times are in seconds. For this particular example,pmetis required a
total of 17.070 seconds, of which 13.850 seconds was taken by the partitioning algorithm itself, and the rest was to
read the graph itself. Similarly,kmetis required a total of 6.790 seconds, of which 3.570 seconds was taken by the
partitioning algorithm itself. As you can see from this example,kmetis is considerably faster thanpmetis , and it
produces a partitioning that is slightly better than that produced bypmetis .

Figure 4 shows the output ofpmetis andkmetis for partitioning a graph into 16 parts subject to three balancing
constraints. Bothpmetis andkmetis have beenover-loadedto invoke the multi-constraint partitioning routines
whenever the input graph file specifies more that one set of vertex weights. Comparing the output of Figure 4 to that
of Figure 3 we see that whenpmetis andkmetis operate in the multi-constraint mode they display some additional
information regarding the number of constraints and also the balance of the computed partitioning with respect to each
one of these constraints. In this example,pmetis was able to balance the three constraints within 1%, 3%, and 2%,
respectively. Note that for multi-constraint partitioning, for small number of partitionspmetis outperformskmetis

in terms of partitioning quality. However, for larger number of partitionskmetis achieves better quality and is more
robust in simultaneously balancing the various constraints.

1For ak way partition of a graph withn vertices, letm be the size of the largest part produced by thek-way partitioning algorithm. The balance
of the partitioning is defined askm/n, and is essentially the load imbalance induced by non-equal partitions.pmetis produces partitions that are
perfectly balanced at each bisection level, however, some small load imbalance may result due to the logk levels of recursive bisection. In general,
the load imbalance is less than 1%.kmetis produces partitions that are not perfectly balanced, but the algorithm limits the load imbalance to 3%.

8

'

&

$

%

prompt% pmetis brack2.graph 100
**

METIS 4.0 Copyright 1998, Regents of the University of Minnesota

Graph Information ---
Name: brack2.graph, #Vertices: 62631, #Edges: 366559, #Parts: 100

Recursive Partitioning... ---
100-way Edge-Cut: 37494, Balance: 1.00

Timing Information --
I/O: 0.820
Partitioning: 6.110 (PMETIS time)
Total: 6.940

**

prompt% kmetis brack2.graph 100
**

METIS 4.0 Copyright 1998, Regents of the University of Minnesota

Graph Information ---
Name: brack2.graph, #Vertices: 62631, #Edges: 366559, #Parts: 100

K-way Partitioning... ---
100-way Edge-Cut: 37310, Balance: 1.03

Timing Information --
I/O: 0.820
Partitioning: 1.750 (KMETIS time)
Total: 2.570

**

Figure 3: Output of pmetis and kmetis for graph brack2.graph and a 100-way partition.

4.2 Mesh Partitioning Programs

METIS provides two programspartnmesh andpartdmesh for partitioning meshes (e.g., those arising in finite
element or finite volume methods) intok equal size parts. These programs take as input the element node array of the
mesh and compute a partitioning for both its elements and its nodes.METIS currently supports four different types of
mesh elements which are triangles, tetrahedra, hexahedra (bricks), and quadrilaterals.

These programs first convert the mesh into a graph, and then usekmetis to partition this graph. The difference
between these two programs is thatpartnmesh converts the mesh into a nodal graph (i.e., each node of the mesh
becomes a vertex of the graph), whereaspartdmesh converts the mesh into a dual graph (i.e., each element becomes
a vertex of the graph). In the case ofpartnmesh , the partitioning of the nodal graph is used to derive a partitioning of
the elements. In the case ofpartdmesh , the partitioning of the dual graph is used to derive a partitioning of the nodes.
Both of these programs produce partitioning of comparable quality, withpartnmesh being considerably faster than
partdmesh . However, in some cases,partnmesh may produce partitions that have higher load imbalance than
partdmesh .

Bothpartnmesh andpartdmesh are invoked by providing two arguments at the command line as follows:

partnmesh MeshFile Nparts
partdmesh MeshFile Nparts

The first argumentMeshFile, is the name of the file that stores the mesh (whose format is described in Section 4.5.2),
while the second argumentNparts, is the number of partitions that is desired. Bothpartnmesh andpartdmesh can
partition a mesh into an arbitrary number of partitions. Upon successful execution, both programs display statistics
regarding the quality of the computed partitioning and the amount of time taken to perform the partitioning. The

9

'

&

$

%

prompt% pmetis m14.graph3 16
**

METIS 4.0 Copyright 1998, Regents of the University of Minnesota

Graph Information ---
Name: m14.graph3, #Vertices: 214765, #Edges: 1679018, #Parts: 16
Balancing Constraints: 3

Recursive Partitioning... ---
16-way Edge-Cut: 74454, Balance: 1.01 1.03 1.02

Timing Information --
I/O: 4.310
Partitioning: 28.410 (PMETIS time)
Total: 32.830

**

prompt% kmetis m14.graph3 16
**

METIS 4.0 Copyright 1998, Regents of the University of Minnesota

Graph Information ---
Name: m14.graph3, #Vertices: 214765, #Edges: 1679018, #Parts: 16
Balancing Constraints: 3

K-way Partitioning... ---
16-way Edge-Cut: 71410, Balance: 1.04 1.04 1.04

Timing Information --
I/O: 4.020
Partitioning: 7.430 (KMETIS time)
Total: 11.550

**

Figure 4: Output of pmetis and kmetis for a multi-constraint graph with three constraints and a 16-way partition.

actual partitioning is stored in two files named:MeshFile.npart.Npartswhich stores the partitioning of the nodes, and
MeshFile.epart.Npartswhich stores the partitioning of the elements. The format of the partitioning files is described
in Section 4.6.1.

Figure 5 shows the output ofpartnmesh andpartdmesh for partitioning a mesh with tetrahedron elements into
100 parts. From this figure we see that both programs initially print information about the mesh, such as its name, the
number of elements (#Elements), the number of nodes (#Nodes), and the type of elements (e.g., TET). Next, they print
some information regarding the quality of the partitioning. Specifically, they report the number of edges being cut
(Edge-Cut) by the partitioning2, as well as the balance of the partitioning. For bothpartnmesh andpartdmesh ,
the balance is computed with respect to the number of elements. The balance with respect to the number of nodes is
not shown, but it is in general similar to the element balance.

Finally, bothpartnmesh andpartdmesh show the time that was taken by the various phases of the algorithm.
All times are in seconds. In this particular example, it tookpartnmesh 23.370 seconds to partition the mesh into
100 parts. Note that this time includes the time required both to construct the nodal graph and to partition it. Similarly,
it took partdmesh 74.560 seconds to partition the same mesh. Again, this time includes the time required both to
construct the dual graph and to partition it. As you can see from this example,partnmesh is considerably faster
thanpartdmesh . This is because of two reasons: (i) the time required to construct the nodal graph is smaller than
the time required to construct the dual graph; (ii) the nodal graph is smaller than the dual graph.

2The edgecut that is reported bypartnmesh is that of the nodal graph, whereas the edgecut reported bypartdmesh is that of the dual graph.
These two edgecuts cannot be compared with each other, as they correspond to partitionings of two totally different graphs.

10

Note If you need to compute multiple partitionings of the same mesh, it may be preferable to first use one of
the mesh conversion programs described in Section 4.4 to first convert the mesh into a graph, and then use
kmetis to partition it. By doing this, you pay the cost of converting the mesh into a graph only once.

'

&

$

%

prompt% partnmesh 144.mesh 100
**

METIS 4.0 Copyright 1998, Regents of the University of Minnesota

Mesh Information --
Name: 144.mesh, #Elements: 905410, #Nodes: 144649, Etype: TET

Partitioning Nodal Graph... ---
100-way Edge-Cut: 105207, Balance: 1.03

Timing Information --
I/O: 13.210
Partitioning: 7.950

**

prompt% partdmesh 144.mesh 100
**

METIS 4.0 Copyright 1998, Regents of the University of Minnesota

Mesh Information --
Name: 144.mesh, #Elements: 905410, #Nodes: 144649, Etype: TET

Partitioning Dual Graph... --
100-way Edge-Cut: 52474, Balance: 1.03

Timing Information --
I/O: 11.540
Partitioning: 28.220

**

Figure 5: Output of partnmesh and partdmesh for mesh 144.mesh and a 100-way partition.

4.3 Sparse Matrix Reordering Programs

METIS provides two programsoemetis andonmetis for computing fill-reducing orderings of sparse matrices.
Both of these programs use multilevel nested dissection to compute a fill-reducing ordering [8]. The nested dissection
paradigm is based on computing a vertex-separator for the the graph corresponding to the matrix. The nodes in the
separator are moved to the end of the matrix, and a similar process is applied recursively for each one of the other two
parts.

Even though both programs are based on multilevel nested dissection, they differ on how they compute the vertex
separators. Theoemetis program finds a vertex separator by first computing an edge separator using a multilevel
algorithm, whereas theonmetis program uses the multilevel paradigm to directly find a vertex separator. The or-
derings produced byonmetis generally incur less fill than those produced byoemetis . In particular, for matrices
arising in linear programming problems the orderings computed byonmetis are significantly better than those pro-
duced byoemetis . Furthermore,onmetis utilizes compression techniques to reduce the size of the graph prior to
computing the ordering. Sparse matrices arising in many application domains are such that certain rows of the matrix
have the same sparsity pattern. Such matrices can be represented by a much smaller graph in which all rows with
identical sparsity pattern are represented by just a single vertex whose weight is equal to the number of rows. Such
compression techniques can significantly reduce the size of the graph, whenever applicable, and substantially reduce
the amount of time required byonmetis . However, when there is no reduction in graph size,oemetis is about
20% to 30% faster thanonmetis . Furthermore, for large matrices arising in three-dimensional problems, the quality

11

'

&

$

%

prompt% oemetis bcsstk31.graph
**

METIS 4.0 Copyright 1998, Regents of the University of Minnesota

Graph Information ---
Name: bcsstk31.graph, #Vertices: 35588, #Edges: 572914

Edge-Based Ordering... --
Nonzeros: 4693428, Operation Count: 1.4356e+09

Timing Information --
I/O: 1.160
Ordering: 7.380 (OEMETIS time)
Symbolic Factorization: 0.440
Total: 8.980

**

prompt% onmetis bcsstk31.graph
**

METIS 4.0 Copyright 1998, Regents of the University of Minnesota

Graph Information ---
Name: bcsstk31.graph, #Vertices: 35588, #Edges: 572914

Node-Based Ordering... --
Nonzeros: 4330669, Operation Count: 1.1564e+09

Timing Information --
I/O: 1.080
Ordering: 4.540 (ONMETIS time)
Symbolic Factorization: 0.440
Total: 6.060

**

Figure 6: Output of oemetis and onmetis for graph bcsstk31.graph.

of orderings produced by the two algorithms is quite similar.
Bothoemetis andonmetis are invoked by providing one argument at the command line as follows:

oemetis GraphFile
onmetis GraphFile

The only argument of these programsGraphFile, is the name of the file that stores the sparse matrix in the graph
format described in Section 4.5.1. Upon successful execution, both programs display statistics regarding the quality
of the computed orderings and the amount of time taken to perform the ordering. The actual ordering is stored in a file
namedGraphFile.iperm, whose format is described in Section 4.6.2.

Figure 6 shows the output ofoemetis andonmetis for computing a fill-reducing ordering of a sample matrix.
From this figure we see that both programs initially print information about the graph, such as its name, the number
of vertices (#Vertices), and the number of edges (#Edges). Next, they print some information regarding the quality of
the ordering. Specifically, they report the number of non-zeros that are required in the lower triangular matrix, and the
number of operations (OPC) required to factor the matrix using Cholesky factorization. Note that number of nonzeros
includes both the original non-zeros and the new non-zeros due to the fill. Finally, bothoemetis andonmetis

show the time that was taken by the various phases of the algorithm. All times are in seconds. For this particular
example,oemetis takes a total of 23.290 seconds, of which 17.760 seconds was taken by the ordering algorithm
itself. For the same exampleonmetis takes a total of 17.340 seconds, of which 11.810 seconds was taken by the
partitioning algorithm itself. Note that in this caseonmetis is faster thanoemetis , becauseonmetis was able
to compress the matrix. Also note that the quality of the fill-reducing ordering produced byonmetis is significantly
better than that produced byoemetis . In fact, the ordering produced byonmetis results in 8% fewer non-zeros

12

and 20% fewer operations.

4.4 Auxiliary Programs

4.4.1 Mesh To Graph Conversion'

&

$

%

prompt% mesh2nodal 144.mesh
**

METIS 4.0 Copyright 1998, Regents of the University of Minnesota

Mesh Information --
Name: 144.mesh, #Elements: 905410, #Nodes: 144649, Etype: TET

Forming Nodal Graph... --
Nodal Information: #Vertices: 144649, #Edges: 1074393

Timing Information --
I/O: 15.290
Nodal Creation: 3.030

**

prompt% mesh2dual 144.mesh
**

METIS 4.0 Copyright 1998, Regents of the University of Minnesota

Mesh Information --
Name: 144.mesh, #Elements: 905410, #Nodes: 144649, Etype: TET

Forming Dual Graph... ---
Dual Information: #Vertices: 905410, #Edges: 1786484

Timing Information --
I/O: 19.200
Dual Creation: 10.880

**

Figure 7: Output of mesh2nodal and mesh2dual for mesh 144.mesh.

METIS provides two programsmesh2nodal andmesh2dual for converting a mesh into the graph format used
by METIS. In particular,mesh2nodal converts the element node array of a mesh into a nodal graph;i.e., each node
of the mesh corresponds to a vertex in the graph and two vertices are connected by an edge if the corresponding
nodes are connected by lines in the mesh. Similarly,mesh2dual converts the element node array of a mesh into
a dual graph;i.e., each element of the mesh corresponds to a vertex in the graph and two vertices are connected if
the corresponding elements in the mesh share a face. These mesh-to-graph conversion programs support meshes with
triangular, tetrahedra, and hexahedra (bricks) elements.

Bothmesh2nodal andmesh2dual are invoked by providing one argument at the command line as follows:

mesh2nodal MeshFile
mesh2dual MeshFile

The only argument of these programsMeshFile, is the name of the file that stores the mesh (whose format is
described in Section 4.5.2). Upon successful execution, both programs display information about the generated graphs,
and the amount of time taken to perform the conversion. The actual graph is stored in a file named:MeshFile.ngraph
in the case ofmesh2nodal andMeshFile.dgraphin the case ofmesh2dual . The format of these graph files are
compatible withMETIS and is described in Section 4.5.1.

Figure 7 shows the output ofmesh2nodal andmesh2dual for generating the nodal and dual graphs of a sample
mesh. Note that the sizes of the generated graphs are different, as the dual graph is larger than the nodal graph. Also
note that generating the nodal graph is considerably faster than generating the dual graph.

13

4.4.2 Graph Checker

METIS provide a program calledgraphchk to check whether or not the format of a graph is appropriate for use with
METIS. This program should be used whenever there is any doubt about the format of any graph file. It is invoked by
providing one argument at the command line as follows:

graphchk GraphFile

whereGraphFileis the name of the file that stores the graph.

14

4.5 Input File Formats

The various programs inMETIS require as input either a file storing a graph or a file storing a mesh. The format of
these files are described in the following sections.

4.5.1 Graph File

The primary input of the partitioning and fill-reducing ordering programs inMETIS is the graph to be partitioned or
ordered. This graph is stored in a file and is supplied to the various programs as one of the command line parameters.

A graphG = (V, E) with n vertices andm edges is stored in a plain text file that containsn + 1 lines (excluding
comment lines). The first line contains information about the size and the type of the graph, while the remainingn
lines contain information for each vertex ofG. Any line that starts with ‘%’ is a comment line and is skipped.

The first line contains either two (n, m), three (n, m, fmt), or four (n, m, fmt, ncon) integers. The first two integers
(n, m) are the number of vertices and the number of edges, respectively. Note that in determining the number of edges
m, an edge between any pair of verticesv andu is countedonly onceand not twice (i.e., we do not count the edge
(v, u) separately from(u, v)). For example, the graph in Figure 8 contains 11 vertices. The third integer (fmt) is used
to specify whether or not the graph has weights associated with its vertices, its edges, or both. Table 2 describes the
possible values offmt and their meaning. Note that if the graph is unweighted (i.e., all vertices and edges have the
same weight), then thefmt parameter can be omitted. Finally, the fourth integer (ncon) is used to specify the number
of weights associated with each vertex of the graph. The value of this parameter determines whether or notMETIS will
use the multi-constraint partitioning algorithms described in Section 3. If the vertices of the graph have no weights or
only a single weight, then thenconparameter can be omitted. However, ifnconis greater than 0, then the file should
contain the required vertex weights and thefmtparameter should be set appropriately (i.e., it should be set to either 10
or 11).

fmt Meaning
0 The graph has no weights associated with either the edges or the vertices
1 The graph has weights associated with the edges
10 The graph has weights associated with the vertices
11 The graph has weights associated with both the edges & vertices

Table 2: The various possible values for the fmt parameter and their meaning.

The remainingn lines store information about the actual structure of the graph. In particular, thei th line (excluding
comment lines) contains information that is relevant to thei th vertex. Depending on the value of thefmt andncon
parameters, the information stored at each line is somewhat different. In the most general form (whenfmt = 11 and
ncon> 1) each line will have the following structure:

w1, w2, . . . wncon, v1, e1, v2, e2, . . . , vk , ek

wherew1, w2, . . . , wncon are thenconvertex weights associated with this vertex,v1, v2, . . . , vk are the vertices adja-
cent to this vertex, ande1, e2, . . . , ek are the weights of these edges. In the remaining of this section we illustrate this
format by a sequence of examples. Note that the vertices are numbered starting from 1 (not from 0 as is often done in
C). Furthermore, the vertex-weights must be integers greater or equal to 0, whereas the edge-weights must be strictly
greater than 0.

The simplest format for a graphG is when the weight of all vertices and the weight of all the edges is the same.
This format is illustrated in Figure 8(a). Note, the optionalfmt parameter is skipped in this case.

However, there are cases in which the edges inG have different weights. This is accommodated as shown in
Figure 8(b). Now, the adjacency list of each vertex contains the weight of the edges in addition to the vertices that is
connected with. Ifv hask vertices adjacent to it, then the line forv in the graph file contains 2∗ k numbers, each pair
of numbers stores the vertex thatv is connected to, and the weight of the edge. Note that thefmt parameter is equal

15

3

4

5

6

2

7

1

7 11
5 3 2
1 3 4

2 3 6 7
1 3 6
5 4 7
6 4

5 4 2 1

3

4

5

6

2

7

1

3

4

5

6

2

7

1

1 2

3
2

2

1

2

2

5

6

1

7 11 1
5 1 3 2 2 1
1 1 3 2 4 1
5 3 4 2 2 2 1 2
2 1 3 2 6 2 7 5
1 1 3 3 6 2
5 2 4 2 7 6
6 6 4 5

3

4

5

6

2

7

1

1 2

3
2

2

1

2

2

5

6

1

[4]

[2]

[1]

[6]

[5]

[3]

[2]

7 11 11
4 5 1 3 2 2 1
2 1 1 3 2 4 1
5 5 3 4 2 2 2 1 2
3 2 1 3 2 6 2 7 5
1 1 1 3 3 6 2
6 5 2 4 2 7 6
2 6 6 4 5

7 11 10 3
1 2 0 5 3 2
0 2 2 1 3 4

2 2 3 2 3 6 7
1 1 1 1 3 6
2 2 1 5 4 7
1 2 1 6 4

4 1 1 5 4 2 1

(a) Unweighted Graph

Graph File:

(c) Weighted Graph

Weights both on vertices and edges

Graph File:

(b) Weighted Graph

Weights on edges

[0, 2, 2]

[1, 2, 0]

[1, 1, 1]

[2, 2, 1]

[4, 1, 1]

[1, 2, 1]

[2, 2, 3]

Graph File:

(d) Multi-Constraint Graph

Graph File:

Figure 8: Storage format for various type of graphs.

to 1, indicating the fact thatG has weights on the edges.
In addition to having weights on the edges, weights on the vertices are also allowed, as illustrated in Figure 8(c). In

this case, the value offmt is equal to 11, and each line of the graph file first stores the weight of the vertex, and then
the weighted adjacency list.

Finally, Figure 8(d) illustrates the format of the input file when the vertices of the graph contain multiple weights
(3 in this example). In this case, the value offmt is equal to 10 (we do not have weights associated with the edges),
and the value ofnconis equal to 3 (since we have three sets of vertex-weights). Each line of the graph file stores the
three weights of the vertices followed by the adjacency list.

4.5.2 Mesh File

The primary input of the mesh partitioning programs inMETIS is the mesh to be partitioned. This mesh is stored in
a file in the form of the element node array. A mesh withn elements is stored in a plain text file that containsn + 1

16

lines. The first line contains information about the size and the type of the mesh, while the remainingn lines contain
the nodes that make up each element.

The first line contains two integers. The first integer is the number of elementsn in the mesh. The second integer
etypeis used to denote the type of elements that the mesh is made off.Etypecan either take the values of 1, 2, 3, or 4,
indicating that the mesh consists of either triangles, tetrahedra, hexahedra (bricks), or quadrilaterals, respectively.

After the first line, the remainingn lines store the element node array. In particular for elementi , line i + 1 stores
the nodes that this element is made off. Depending onetype, each line can either have three integers (in the case of
triangles), four integers (in the case of tetrahedra and quadrilaterals), or eight integers (in the case of hexahedra). In
the case of triangles and tetrahedra, the ordering of the nodes for each element does not matter. However, in the case
of hexahedra and quadrilaterals, the nodes for each element should be ordered according to the numbering illustrated
in Figure 9(b). Note that the node numbering starts from 1.

Figure 9 illustrates this format for a small mesh with triangular elements. Note that theetypefield of the mesh file
is set to 1 indicating that the mesh consists of triangular elements.

Mesh File:

(a) Sample Mesh File

2
3

1

6

3

54

4 4

2

(b) Ordering of nodes

1

3
5

6
7

8

1

2

5 6 3
4 5 6

5 1
1 2 3
2 4 6
2 6 3

Figure 9: (a) The file that stores the mesh. (b) The ordering of the nodes in the case of hexahedra and quadrilaterals.

4.6 Output File Formats

The output ofMETIS is either a partition or an ordering file, depending on whetherMETIS is used for graph/mesh
partitioning or for sparse matrix ordering. The format of these files are described in the following sections.

4.6.1 Partition File

The partition file of a graph withn vertices consists ofn lines with a single number per line. Thei th line of the
file contains the partition number that thei th vertex belongs to. Partition numbers start from 0 up to the number of
partitions minus one.

4.6.2 Ordering File

The ordering file of a graph withn vertices consists ofn lines with a single number per line. Thei th line of the
ordering file contains the new order of thei th vertex of the graph. The numbering in the ordering file starts from 0.

Note that the ordering file stores what is referred to as the the inverse permutation vectoripermof the ordering. Let
A be a matrix and letA′ be the reordered matrix. The inverse permutation vector maps thei th row (column) ofA into
the iperm[i] row (column) ofA′.

17

5 METIS’s Library Interface

The various programs provided inMETIS can also be directly accessed from a C or Fortran program by using the stand-
alone libraryMETISlib. Furthermore,METISlib extends the functionality provided byMETIS’s stand-alone programs
in two different ways. First, it allows the user to alter the behavior of the various algorithms inMETIS, and second
METISlib provides additional routines that can be used to partition graphs into unequal-size partitions and compute
partitionings that directly minimize the total communication volume.

In the rest of this section we describe the interface to the routines inMETISlib by first describing the various data
structures used to pass information into and get information out of the routines, followed by a detailed description of
the calling sequence of the various routines.

5.1 Graph Data Structure

All of the graph partitioning and sparse matrix ordering routines inMETISlib take as input the adjacency structure of
the graph and the weights of the vertices and edges (if any).

The adjacency structure of the graph is stored using the compressed storage format (CSR). The CSR format is a
widely used scheme for storing sparse graphs. In this format the adjacency structure of a graph withn vertices and
m edges is represented using two arraysxadj andadjncy . Thexadj array is of sizen + 1 whereas theadjncy

array is of size 2m (this is because for each edge between verticesv andu we actually store both(v, u) and(u, v)).
The adjacency structure of the graph is stored as follows. Assuming that vertex numbering starts from 0 (C style),

then the adjacency list of vertexi is stored in arrayadjncy starting at indexxadj[i] and ending at (but not
including) indexxadj[i + 1] (i.e., adjncy[xadj[i]] through and includingadjncy[xadj[i + 1]-1]). That
is, for each vertexi , its adjacency list is stored in consecutive locations in the arrayadjncy , and the arrayxadj is
used to point to where it begins and where it ends. Figure 10(b) illustrates the CSR format for the 15-vertex graph
shown in Figure 10(a).

31286 7 8413929425 3 117518 14 914128 13adjncy

xadj

(b CSR format

(a) A sample graph

1351060 11 117121067

14131211

0 4321

10

98765

0 44423936

1 31620

3311852 13 3128242016

Figure 10: An example of the CSR format for storing sparse graphs.

The weights of the vertices (if any) are stored in an additional array calledvwgt . If nconis the number of weights
associated with each vertex, the arrayvwgt containsn ∗ nconelements (recall thatn is the number of vertices). The
weights of thei th vertex are stored innconconsecutive entries starting at locationvwgt[i ∗ ncon] . Note that if
each vertex has only a single weight, thenvwgt will contain n elements, andvwgt[i] will store the weight of the
i th vertex. The vertex-weights must be integers greater or equal to zero. If all the vertices of the graph have the same
weight (i.e., the graph is unweighted), then thevwgt can be set to NULL.

The weights of the edges (if any) are stored in an additional array calledadjwgt . This array contains 2m elements,
and the weight of edgeadjncy[j] is stored at locationadjwgt[j] . The edge-weights must be integers greater
than zero. If all the edges of the graph have the same weight (i.e., the graph is unweighted), then theadjwgt can be
set to NULL.

All of these four arrays (xadj, adjncy, vwgt, andadjwgt) are defined inMETISlib to be of of typeidxtype . By
default idxtype is set to be equivalent to typeint (i.e., the integer datatype of C). However,idxtype can be

18

made to be equivalent to ashort int for certain architectures that use 64-bit integers by default. The conversion of
idxtype from int to short can be done by modifying the fileLib/struct.h (instructions are included there).
The sameidxtype is used for the arrays that are used to store the computed partition and permutation vector.

5.2 Mesh Data Structure

All of the mesh partitioning and mesh conversion routines inMETISlib take as input the element node array of a mesh.
This element node array is stored using an array calledelmnts . For a mesh withn elements andk nodes per element,
the size of theelmnts array isn ∗ k. Note that since the supported elements inMETIS are only triangles, tetrahedra,
hexahedra, and quadrilaterals, the possible values fork are 3, 4, 8, and 4, respectively.

The element node array of the mesh is stored inelmnts as follows. Assuming that the element numbering starts
from 0 (C style), then thek nodes that make up elementi are stored in arrayelmnts starting at indexi ∗k and ending
(but not including) index(i + 1) ∗ k. As it was the case with the format of the mesh file described in Section 4.5.2,
the ordering of the nodes is not important for triangle and tetrahedra elements. However, in the case of hexahedra, the
nodes for each element must be ordered according to the numbering illustrated in Figure 9(b).

The array that describes the element node array of the mesh is defined inMETISlib to be of typeidxtype , which
by default is equivalent toint (i.e., integers).

5.3 Partitioning Objectives

The partitioning algorithms inMETISlib can be used to compute a balancedk-way partitioning that minimizes either
the number of edges that straddle partitions (edgecut) or the total communication volume (totalv). In the rest of this
section we briefly describe these two objectives and provide some suggestions on when they should be used.

Minimizing the Edge-Cut Consider a graphG = (V, E), and letP be a vector of size|V | such thatP[i] stores
the number of the partition that vertexi belongs to. Theedgecutof this partitioning is defined as the number of edges
that straddle partitions. That is, the number of edges(v, u) for which P[v] 6= P[u]. If the graph has weights associated
with the edges, then the edgecut is defined as the sum of the weight of these straddling edges.

Minimizing the Total Communication Volume Consider a graphG = (V, E), and letP be a vector of size
|V | such thatP[i] stores the number of the partition that vertexi belongs to. LetVb ⊂ V be the subset of interface (or
boarder) vertices. That is, each vertexv ∈ Vb is connected to at least one vertex that belongs to a different partition.
For each vertexv ∈ Vb let Nad j [v] be the number of domains other thanP[v] that the vertices adjacent tov belong
to. Thetotalvof this partitioning is defined as:

totalv=
∑
v∈Vb

Nad j [v]. (1)

Equation 1 corresponds to the total communication volume incurred by the partitioning because each interface vertex
v needs to be sent to all of itsNad j [v] partitions.

The above model can be extended to instances in which the amount of data that needs to be sent for each node is
different. In particular, ifwv is the amount of data that needs to be sent for vertexv, then Equation 1 can be re-written
as:

totalv=
∑
v∈Vb

wvNad j [v]. (2)

METISlib supports this weighted totalv model by using an array calledvsize such that the amount of data that needs
to be sent due to thei th vertex is stored invsize[i] . Note that the amount of data that needs to be sent is different
from theweightof the vertex. The former corresponds to communication cost whereas the later corresponds to the
computational cost.

Note that for partitioning algorithms to correctly minimize the totalv, the graph should reflect the true information
exchange requirements of the underlying computations. For instance, the dual graph of a finite element mesh does not

19

correctly model the underlying communication, whereas the nodal graph does.

Which one is Better? When partitioning is used to distribute a graph or a mesh among the processors of a parallel
computer, the edgecut is only an approximation of the true communication cost resulting from the partitioning. On
the other hand, by minimizing the totalv we can directly minimize the overall communication cost. Despite of that,
for many graphs the solutions obtained by minimizing the edgecut or minimizing the totalv, are comparable. This
is especially true for graphs corresponding to well-shaped finite element meshes. This is because for these graphs,
the degrees of the various vertices are similar and the objectives of minimizing the edgecut or the totalv behave the
same. On the other hand, if the vertex degrees vary significantly (e.g., graphs corresponding to linear programming
matrices), then by minimizing the totalv we can obtain a significant reduction in the total communication volume.

In terms of the amount of time required by these two partitioning objectives, minimizing the edgecut is faster than
minimizing the totalv. For this reason, the totalv objective should be used only for problems in which it actually
reduces the overall communication volume.

20

5.4 Graph Partitioning Routines

METIS PartGraphRecursive (int *n, idxtype *xadj, idxtype *adjncy, idxtype *vwgt, idxtype *adjwgt, int *wgtflag,
int *numflag, int *nparts, int *options, int *edgecut, idxtype *part)

Description
It is used to partition a graph intok equal-size parts using multilevel recursive bisection. It provides the func-
tionality of thepmetis program. The objective of the partitioning is to minimize the edgecut (as described in
Section 5.3).

Parameters
n The number of vertices in the graph.
xadj, adjncy

The adjacency structure of the graph as described in Section 5.1.
vwgt, adjwgt

Information about the weights of the vertices and edges as described in Section 5.1.

wgtflag Used to indicate if the graph is weighted.wgtflagcan take the following values:

0 No weights (vwgts and adjwgt are NULL)

1 Weights on the edges only (vwgts = NULL)

2 Weights on the vertices only (adjwgt = NULL)

3 Weights both on vertices and edges.

numflag Used to indicate which numbering scheme is used for the adjacency structure of the graph.numflag
can take the following two values:

0 C-style numbering is assumed that starts from 0

1 Fortran-style numbering is assumed that starts from 1

nparts The number of parts to partition the graph.

options This is an array of 5 integers that is used to pass parameters for the various phases of the algorithm.
If options[0]=0 then default values are used. Ifoptions[0]=1, then the remaining four elements of
optionsare interpreted as follows:

options[1] Determines matching type. Possible values are:

1 Random Matching (RM)

2 Heavy-Edge Matching (HEM)

3 Sorted Heavy-Edge Matching (SHEM) (Default)

Experiments has shown that both HEM and SHEM perform quite well.

options[2] Determines the algorithm used during initial partitioning. Possible values are:

1 Region Growing (Default)

options[3] Determines the algorithm used for refinement. Possible values are:

1 Early-Exit Boundary FM refinement (Default)

options[4] Used for debugging purposes. Always set it to 0 (Default).

edgecut Upon successful completion, this variable stores the number of edges that are cut by the partition.

part This is a vector of sizen that upon successful completion stores the partition vector of the graph. The
numbering of this vector starts from either 0 or 1, depending on the value ofnumflag.

Note
This function should be used to partition a graph into a small number of partitions (less than 8). If a large number
of partitions is desired, theMETIS PartGraphKway should be used instead, as it is significantly faster.

21

METIS PartGraphKway (int *n, idxtype *xadj, idxtype *adjncy, idxtype *vwgt, idxtype *adjwgt, int *wgtflag,
int *numflag, int *nparts, int *options, int *edgecut, idxtype *part)

Description
It is used to partition a graph intok equal-size parts using the multilevelk-way partitioning algorithm. It
provides the functionality of thekmetis program. The objective of the partitioning is to minimize the edgecut
(as described in Section 5.3).

Parameters
n The number of vertices in the graph.
xadj, adjncy

The adjacency structure of the graph as described in Section 5.1.
vwgt, adjwgt

Information about the weights of the vertices and edges as described in Section 5.1.

wgtflag Used to indicate if the graph is weighted.wgtflagcan take the following values:

0 No weights (vwgts and adjwgt are NULL)

1 Weights on the edges only (vwgts = NULL)

2 Weights on the vertices only (adjwgt = NULL)

3 Weights both on vertices and edges.

numflag Used to indicate which numbering scheme is used for the adjacency structure of the graph.numflag
can take the following two values:

0 C-style numbering is assumed that starts from 0

1 Fortran-style numbering is assumed that starts from 1

nparts The number of parts to partition the graph.

options This is an array of 5 integers that is used to pass parameters for the various phases of the algorithm.
If options[0]=0 then default values are used. Ifoptions[0]=1, then the remaining four elements of
optionsare interpreted as follows:

options[1] Determines the matching type. Possible values are:

1 Random Matching (RM)

2 Heavy-Edge Matching (HEM)

3 Sorted Heavy-Edge Matching (SHEM) (Default)

Experiments has shown that both HEM and SHEM perform quite well.

options[2] Determines the algorithm used during initial partitioning. Possible values are:

1 Multilevel recursive bisection (Default)

options[3] Determines the algorithm used for refinement. Possible values are:

1 Random boundary refinement

2 Greedy boundary refinement

3 Random boundary refinement that also minimizes the connectivity among the sub-
domains (Default)

options[4] Used for debugging purposes. Always set it to 0 (Default).

edgecut Upon successful completion, this variable stores the number of edges that are cut by the partition.

part This is a vector of sizen that upon successful completion stores the partition vector of the graph. The
numbering of this vector starts from either 0 or 1, depending on the value ofnumflag.

Note
This function should be used to partition a graph into a large number of partitions (greater than 8). If a small
number of partitions is desired, theMETIS PartGraphRecursive should be used instead, as it produces some-
what better partitions.

22

METIS PartGraphVKway (int *n, idxtype *xadj, idxtype *adjncy, idxtype *vwgt, idxtype *vsize, int *wgtflag,
int *numflag, int *nparts, int *options, int *volume, idxtype *part)

Description
It is used to partition a graph intok equal-size parts using the multilevelk-way partitioning algorithm. The
objective of the partitioning is to minimize the total communication volume (as described in Section 5.3).

Parameters
n The number of vertices in the graph.

xadj, adjncy
The adjacency structure of the graph as described in Sections 5.1 and 5.3.

vwgt, vsize
Information about the weights of the vertices related to the computation and communication as de-
scribed in Section 5.1.

wgtflag Used to indicate if the graph is weighted.wgtflagcan take the following values:

0 No weights (vwgts and vsize are NULL)

1 Communication weights only (vwgts = NULL)

2 Computation weights only (vsize = NULL)

3 Both communication and computation weights.

numflag Used to indicate which numbering scheme is used for the adjacency structure of the graph.numflag
can take the following two values:

0 C-style numbering is assumed that starts from 0

1 Fortran-style numbering is assumed that starts from 1

nparts The number of parts to partition the graph.

options This is an array of 5 integers that is used to pass parameters for the various phases of the algorithm.
If options[0]=0 then default values are used. Ifoptions[0]=1, then the remaining four elements of
optionsare interpreted as follows:

options[1] Determines the matching type. Possible values are:

1 Random Matching (RM)

2 Heavy-Edge Matching (HEM)

3 Sorted Heavy-Edge Matching (SHEM) (Default)

Experiments has shown that both HEM and SHEM perform quite well.

options[2] Determines the algorithm used during initial partitioning. Possible values are:

1 Multilevel recursive bisection (Default)

options[3] Determines the algorithm used for refinement. Possible values are:

1 Random boundary refinement (Default)

3 Random boundary refinement that also minimizes the connectivity among the sub-
domains

options[4] Used for debugging purposes. Always set it to 0 (Default).

volume Upon successful completion, this variable stores the total communication volume requires by the
partition.

part This is a vector of sizen that upon successful completion stores the partition vector of the graph. The
numbering of this vector starts from either 0 or 1, depending on the value ofnumflag.

23

METIS mCPartGraphRecursive (int *n, int *ncon, idxtype *xadj, idxtype *adjncy, idxtype *vwgt, idxtype *adjwgt,
int *wgtflag, int *numflag, int *nparts, int *options, int *edgecut, idxtype *part)

Description
It is used to partition a graph intok parts such that multiple balancing constraints are satisfied. It uses the multi-
constraint multilevel recursive bisection algorithm. It provides the functionality of thepmetis program when
it is used to compute a multi-constraint partitioning. The objective of the partitioning is to minimize the edgecut
(as described in Section 5.3).

Parameters
n The number of vertices in the graph.

ncon The number of constraints. This should be greater than one and smaller than 15.
xadj, adjncy

The adjacency structure of the graph as described in Section 5.1.
vwgt, adjwgt

Information about the weights of the vertices and edges as described in Section 5.1. Note that the
weight vector must be supplied and it should be of sizen*ncon.

wgtflag Used to indicate if the graph is weighted.wgtflagcan take the following values:

0 No weights (adjwgt is NULL)

1 Weights on the edges.

numflag Used to indicate which numbering scheme is used for the adjacency structure of the graph.numflag
can take the following two values:

0 C-style numbering is assumed that starts from 0

1 Fortran-style numbering is assumed that starts from 1

nparts The number of parts to partition the graph.

options This is an array of 5 integers that is used to pass parameters for the various phases of the algorithm.
If options[0]=0 then default values are used. Ifoptions[0]=1, then the remaining four elements of
optionsare interpreted as follows:

options[1] Determines the matching type. Possible values are:

1 Random Matching (RM)

2 Heavy-Edge Matching (HEM)

3 Sorted Heavy-Edge Matching (SHEM) (Default)

5 Sorted Heavy-Edge Matching followed by 1-norm Balanced-edge (SHEBM1N)

6 Sorted Heavy-Edge Matching followed by∞-norm Balanced-edge (SHEBMIN)
(Default)

7 1-norm Balanced-edge followed by Heavy-Edge Matching (SBHEM1N)

8 ∞-norm Balanced-edge followed by Heavy-Edge Matching (SBHEMIN)

Experiments has shown that for simple balancing problems, the schemes that give pri-
ority to heavy edges (e.g., SHEM, SHEBM1N, SHEBMIN) perform better, and for hard
balancing problems, the schemes that give priority to balanced edges (e.g., SBHEM1N,
SBHEMIN) perform better.

options[2] Determines the algorithm used during initial partitioning. Possible values are:

1 Multi-constraint Greedy Graph Growing

2 Random (Default)

options[3] Determines the algorithm used for refinement. Possible values are:

24

1 Early-Exit Boundary FM refinement (Default)

options[4] Used for debugging purposes. Always set it to 0 (Default).

edgecut Upon successful completion, this variable stores the number of edges that are cut by the partition.

part This is a vector of sizen that upon successful completion stores the partition vector of the graph. The
numbering of this vector starts from either 0 or 1, depending on the value ofnumflag.

Note
This function should be used to partition a graph into a small number of partitions. If a large number of partitions
is desired, theMETIS mCPartGraphKway should be used instead, as it produces somewhat better partitions
(both in terms of quality and balance).

25

METIS mCPartGraphKway (int *n, int *ncon, idxtype *xadj, idxtype *adjncy, idxtype *vwgt, idxtype *adjwgt,
int *wgtflag, int *numflag, int *nparts, float *ubvec, int *options, int *edgecut,
idxtype *part)

Description
It is used to partition a graph intok parts such that multiple balancing constraints are satisfied. It uses the multi-
constraint multilevelk-way partitioning algorithm. It provides the functionality of thekmetis program when
it is used to compute a multi-constraint partitioning. The objective of the partitioning is to minimize the edgecut
(as described in Section 5.3).

Parameters
n The number of vertices in the graph.

ncon The number of constraints. This should be greater than one and smaller than 15.
xadj, adjncy

The adjacency structure of the graph as described in Section 5.1.
vwgt, adjwgt

Information about the weights of the vertices and edges as described in Section 5.1. Note that the
weight vector must be supplied and it should be of sizen*ncon.

wgtflag Used to indicate if the graph is weighted.wgtflagcan take the following values:

0 No weights (adjwgt is NULL)

1 Weights on the edges.

numflag Used to indicate which numbering scheme is used for the adjacency structure of the graph.numflag
can take the following two values:

0 C-style numbering is assumed that starts from 0

1 Fortran-style numbering is assumed that starts from 1

nparts The number of parts to partition the graph.

ubvec This is a vector of sizencon that specifies the load imbalance tolerances for each one of thencon
constraints. Each tolerance should be greater than 1.0 (preferably greater than 1.03).

options This is an array of 5 integers that is used to pass parameters for the various phases of the algorithm.
If options[0]=0 then default values are used. Ifoptions[0]=1, then the remaining four elements of
optionsare interpreted as follows:

options[1] Determines the matching type. Possible values are:

1 Random Matching (RM)

2 Heavy-Edge Matching (HEM)

3 Sorted Heavy-Edge Matching (SHEM) (Default)

5 Sorted Heavy-Edge Matching followed by 1-norm Balanced-edge (SHEBM1N)

6 Sorted Heavy-Edge Matching followed by∞-norm Balanced-edge (SHEBMIN)
(Default)

7 1-norm Balanced-edge followed by Heavy-Edge Matching (SBHEM1N)

8 ∞-norm Balanced-edge followed by Heavy-Edge Matching (SBHEMIN)

Experiments has shown that for simple balancing problems, the schemes that give pri-
ority to heavy edges (e.g., SHEM, SHEBM1N, SHEBMIN) perform better, and for hard
balancing problems, the schemes that give priority to balanced edges (e.g., SBHEM1N,
SBHEMIN) perform better.

options[2] Determines the algorithm used during initial partitioning. Possible values are:

26

1 Multilevel recursive bisection

2 Relaxed Multilevel recursive bisection (Default)

options[3] Determines the algorithm used for refinement. Possible values are:

1 Random boundary refinement (Default)

options[4] Used for debugging purposes. Always set it to 0 (Default).

edgecut Upon successful completion, this variable stores the number of edges that are cut by the partition.

part This is a vector of sizen that upon successful completion stores the partition vector of the graph. The
numbering of this vector starts from either 0 or 1, depending on the value ofnumflag.

Note
This function should be used to partition a graph into a large number of partitions (greater than 8). If a small
number of partitions is desired, theMETIS mCPartGraphRecursive should be used instead, as it produces
somewhat better partitions.

27

METIS WPartGraphRecursive (int *n, idxtype *xadj, idxtype *adjncy, idxtype *vwgt, idxtype *adjwgt, int *wgtflag,
int *numflag, int *nparts, float *tpwgts, int *options, int *edgecut, idxtype *part)

Description
It is used to partition a graph intok parts using multilevel recursive bisection. The underlying algorithm is
similar to the one used byMETIS PartGraphRecursive, but it can be used to compute a partitioning with
prescribed partition weights. For example, it can be used to compute a 3-way partition such that partition 1 has
50% of the weight, partition 2 has 20% of the weight, and partition 3 has 30% of the weight. The objective of
the partitioning is to minimize the edgecut (as described in Section 5.3).

Parameters
n The number of vertices in the graph.

xadj, adjncy
The adjacency structure of the graph as described in Section 5.1.

vwgt, adjwgt
Information about the weights of the vertices and edges as described in Section 5.1.

wgtflag Used to indicate if the graph is weighted.wgtflagcan take the following values:

0 No weights (vwgts and adjwgt are NULL)

1 Weights on the edges only (vwgts = NULL)

2 Weights on the vertices only (adjwgt = NULL)

3 Weights both on vertices and edges.

numflag Used to indicate which numbering scheme is used for the adjacency structure of the graph.numflag
can take the following two values:

0 C-style numbering is assumed that starts from 0

1 Fortran-style numbering is assumed that starts from 1

nparts The number of parts to partition the graph.

tpwgts This is an array containingnpartsfloating point numbers. For partitioni , tpwgts[i] stores the fraction
of the total weight that should be assigned to it. For example, for a 4-way partition the vectortpwgts[]
= {0.2 0.2 0.4 0.2}will result in partitions 0, 1, and 3 having 20% of the weight and partition 2 having
40% of the weight. Note that the numbers intpwgtsshould add up to 1.0.

options This is an array of 5 integers that is used to pass parameters for the various phases of the algorithm.
If options[0]=0 then default values are used. Ifoptions[0]=1, then the remaining four elements of
optionsare interpreted as follows:

options[1] Determines the matching type. Possible values are:

1 Random Matching (RM)

2 Heavy-Edge Matching (HEM)

3 Sorted Heavy-Edge Matching (SHEM) (Default)

Experiments has shown that both HEM and SHEM perform quite well.

options[2] Determines the algorithm used during initial partitioning. Possible values are:

1 Region Growing (Default)

options[3] Determines the algorithm used for refinement. Possible values are:

1 Early-Exit Boundary FM refinement (Default)

options[4] Used for debugging purposes. Always set it to 0 (Default).

edgecut Upon successful completion, this variable stores the number of edges that are cut by the partition.

28

part This is a vector of sizen that upon successful completion stores the partition vector of the graph. The
numbering of this vector starts from either 0 or 1, depending on the value ofnumflag.

Note
This function should be used to partition a graph into a small number of partitions (less than 8). If a large number
of partitions is desired, theMETIS WPartGraphKway should be used instead, as it is significantly faster.

29

METIS WPartGraphKway (int *n, idxtype *xadj, idxtype *adjncy, idxtype *vwgt, idxtype *adjwgt, int *wgtflag,
int *numflag, int *nparts, float *tpwgts, int *options, int *edgecut, idxtype *part)

Description
It is used to partition a graph intok parts using multilevel recursive bisection. The underlying algorithm is
similar to the one used byMETIS PartGraphKway, but it can be used to compute a partitioning with prescribed
partition weights. For example, it can be used to compute a 3-way partition such that partition 1 has 50% of
the weight, partition 2 has 20% of the weight, and partition 3 has 30% of the weight. The objective of the
partitioning is to minimize the edgecut (as described in Section 5.3).

Parameters
n The number of vertices in the graph.
xadj, adjncy

The adjacency structure of the graph as described in Section 5.1.
vwgt, adjwgt

Information about the weights of the vertices and edges as described in Section 5.1.

wgtflag Used to indicate if the graph is weighted.wgtflagcan take the following values:

0 No weights (vwgts and adjwgt are NULL)

1 Weights on the edges only (vwgts = NULL)

2 Weights on the vertices only (adjwgt = NULL)

3 Weights both on vertices and edges.

numflag Used to indicate which numbering scheme is used for the adjacency structure of the graph.numflag
can take the following two values:

0 C-style numbering is assumed that starts from 0

1 Fortran-style numbering is assumed that starts from 1

nparts The number of parts to partition the graph.

tpwgts This is an array containingnpartsfloating point numbers. For partitioni , tpwgts[i] stores the fraction
of the total weight that should be assigned to it. For example, for a 4-way partition the vectortpwgts[]
= {0.2 0.2 0.4 0.2}will result in partitions 0, 1, and 3 having 20% of the weight and partition 2 having
40% of the weight. Note that the numbers intpwgtsshould add up to 1.0.

options This is an array of 5 integers that is used to pass parameters for the various phases of the algorithm.
If options[0]=0 then default values are used. Ifoptions[0]=1, then the remaining four elements of
optionsare interpreted as follows:

options[1] Determines the matching type. Possible values are:

1 Random Matching (RM)

2 Heavy-Edge Matching (HEM)

3 Sorted Heavy-Edge Matching (SHEM) (Default)

Experiments has shown that both HEM and SHEM perform quite well.

options[2] Determines the algorithm used during initial partitioning. Possible values are:

1 Multilevel recursive bisection (Default)

options[3] Determines the algorithm used for refinement. Possible values are:

1 Random boundary refinement

2 Greedy boundary refinement

3 Random boundary refinement that also minimizes the connectivity among the sub-
domains (Default)

30

options[4] Used for debugging purposes. Always set it to 0 (Default).

edgecut Upon successful completion, this variable stores the number of edges that are cut by the partition.

part This is a vector of sizen that upon successful completion stores the partition vector of the graph. The
numbering of this vector starts from either 0 or 1, depending on the value ofnumflag.

Note
This function should be used to partition a graph into a large number of partitions (greater than 8). If a small
number of partitions is desired, theMETIS WPartGraphRecursive should be used instead, as it produces
somewhat better partitions.

31

METIS WPartGraphVKway (int *n, idxtype *xadj, idxtype *adjncy, idxtype *vwgt, idxtype *vsize, int *wgtflag,
int *numflag, int *nparts, float *tpwgts, int *options, int *volume, idxtype *part)

Description
It is used to partition a graph intok parts using multilevel recursive bisection. The underlying algorithm is
similar to the one used byMETIS PartGraphKway, but it can be used to compute a partitioning with prescribed
partition weights. For example, it can be used to compute a 3-way partition such that partition 1 has 50% of
the weight, partition 2 has 20% of the weight, and partition 3 has 30% of the weight. The objective of the
partitioning is to minimize the total communication volume (as described in Section 5.3).

Parameters
n The number of vertices in the graph.
xadj, adjncy

The adjacency structure of the graph as described in Sections 5.1 and 5.3.
vwgt, vsize

Information about the weights of the vertices related to the computation and communication as de-
scribed in Section 5.1.

wgtflag Used to indicate if the graph is weighted.wgtflagcan take the following values:

0 No weights (vwgts and vsize are NULL)

1 Communication weights only (vwgts = NULL)

2 Computation weights only (vsize = NULL)

3 Both communication and computation weights.

numflag Used to indicate which numbering scheme is used for the adjacency structure of the graph.numflag
can take the following two values:

0 C-style numbering is assumed that starts from 0

1 Fortran-style numbering is assumed that starts from 1

nparts The number of parts to partition the graph.

tpwgts This is an array containingnpartsfloating point numbers. For partitioni , tpwgts[i] stores the fraction
of the total weight that should be assigned to it. For example, for a 4-way partition the vectortpwgts[]
= {0.2 0.2 0.4 0.2}will result in partitions 0, 1, and 3 having 20% of the weight and partition 2 having
40% of the weight. Note that the numbers intpwgtsshould add up to 1.0.

options This is an array of 5 integers that is used to pass parameters for the various phases of the algorithm.
If options[0]=0 then default values are used. Ifoptions[0]=1, then the remaining four elements of
optionsare interpreted as follows:

options[1] Determines the matching type. Possible values are:

1 Random Matching (RM)

2 Heavy-Edge Matching (HEM)

3 Sorted Heavy-Edge Matching (SHEM) (Default)

Experiments has shown that both HEM and SHEM perform quite well.

options[2] Determines the algorithm used during initial partitioning. Possible values are:

1 Multilevel recursive bisection (Default)

options[3] Determines the algorithm used for refinement. Possible values are:

1 Random boundary refinement (Default)

3 Random boundary refinement that also minimizes the connectivity among the sub-
domains

32

options[4] Used for debugging purposes. Always set it to 0 (Default).

volume Upon successful completion, this variable stores the total communication volume required by the
partition.

part This is a vector of sizen that upon successful completion stores the partition vector of the graph. The
numbering of this vector starts from either 0 or 1, depending on the value ofnumflag.

33

5.5 Mesh Partitioning Routines

METIS PartMeshNodal (int *ne, int *nn, idxtype *elmnts, int *etype, int *numflag, int *nparts, int *edgecut,
idxtype *epart, idxtype *npart)

Description
This function is used to partition a mesh intok equal-size parts. It provides the functionality of thepartnmesh
program.

Parameters
ne The number of elements in the mesh.

nn The number of nodes in the mesh.

elmnts The element node array storing the mesh as described in Section 5.2.

etype Indicates the type of the elements in the mesh.etypecan take the following values:

1 The elements are triangles.

2 The elements are tetrahedra.

3 The elements are hexahedra (bricks).

4 The elements are quadrilaterals.

numflag Used to indicate which numbering scheme is used for the element node array.numflagcan take the
following two values:

0 C-style numbering is assumed that starts from 0

1 Fortran-style numbering is assumed that starts from 1

nparts The number of parts to partition the mesh.

edgecut Upon successful completion, this variable stores the number of edges that are cut by the partition in
the nodal graph.

epart This is a vector of sizenethat upon successful completion stores the partition vector for the elements
of the mesh. The numbering of this vector starts from either 0 or 1, depending on the value of
numflag.

npart This is a vector of sizenn that upon successful completion stores the partition vector for the nodes of
the mesh. The numbering of this vector starts from either 0 or 1, depending on the value ofnumflag.

Note
This function converts the mesh into a nodal graph and then usesMETIS PartGraphKway to compute a parti-
tioning of the nodes. This partitioning of nodes is then used to compute a partitioning for the elements. This is
done by assigning each element to the partition in which the majority of its nodes belong to (subject to balance
constraints).

34

METIS PartMeshDual (int *ne, int *nn, idxtype *elmnts, int *etype, int *numflag, int *nparts, int *edgecut,
idxtype *epart, idxtype *npart)

Description
This function is used to partition a mesh intok equal-size parts. It provides the functionality of thepartdmesh

program.

Parameters
ne The number of elements in the mesh.

nn The number of nodes in the mesh.

elmnts The element node array storing the mesh as described in Section 5.2.

etype Indicates the type of the elements in the mesh.etypecan take the following values:

1 The elements are triangles.

2 The elements are tetrahedra.

3 The elements are hexahedra (bricks).

4 The elements are quadrilaterals.

numflag Used to indicate which numbering scheme is used for the element node array.numflagcan take the
following two values:

0 C-style numbering is assumed that starts from 0

1 Fortran-style numbering is assumed that starts from 1

nparts The number of parts to partition the mesh.

edgecut Upon successful completion, this variable stores the number of edges that are cut by the partition in
the dual graph.

epart This is a vector of sizenethat upon successful completion stores the partition vector for the elements
of the mesh. The numbering of this vector starts from either 0 or 1, depending on the value of
numflag.

npart This is a vector of sizenn that upon successful completion stores the partition vector for the nodes of
the mesh. The numbering of this vector starts from either 0 or 1, depending on the value ofnumflag.

Note
This function converts the mesh into a dual graph and then usesMETIS PartGraphKway to compute a parti-
tioning of the elements. This partitioning of elements is then used to compute a partitioning for the nodes. This
is done by assigning each node to the partition in which the majority of its incident elements belong to (subject
to balance constraints).

35

5.6 Sparse Matrix Reordering Routines

METIS EdgeND (int *n, idxtype *xadj, idxtype *adjncy, int *numflag, int *options, idxtype *perm, idxtype *iperm)

Description
This function computes fill reducing orderings of sparse matrices using the multilevel nested dissection algo-
rithm. It provides the functionality of theoemetis program.

Parameters
n The number of vertices in the graph.

xadj, adjncy
The adjacency structure of the graph as described in Section 5.1.

numflag Used to indicate which numbering scheme is used for the adjacency structure of the graph.numflag
can take the following two values:

0 C-style numbering is assumed that starts from 0

1 Fortran-style numbering is assumed that starts from 1

options This is an array of 5 integers that is used to pass parameters for the various phases of the algorithm.
If options[0]=0 then default values are used. Ifoptions[0]=1, then the remaining four elements of
optionsare interpreted as follows:

options[1] Determined the matching type. Possible values are:

1 Random Matching (RM)

2 Heavy-Edge Matching (HEM)

3 Sorted Heavy-Edge Matching (SHEM) (Default)

Experiments has shown that both HEM and SHEM perform quite well.

options[2] Determines the algorithm used during initial partitioning. Possible values are:

1 Region Growing (Default)

options[3] Determines the algorithm used for refinement. Possible values are:

1 Early-Exit Boundary FM refinement (Default)

options[4] Used for debugging purposes. Always set it to 0 (Default).

perm, iperm
These are vectors, each of sizen. Upon successful completion, they store the fill-reducing permu-
tation and inverse-permutation. LetA be the original matrix andA′ be the permuted matrix. The
arrayspermandipermare defined as follows. Row (column)i of A′ is the perm[i] row (column) of
A, and row (column)i of A is the iperm[i] row (column) ofA′. The numbering of this vector starts
from either 0 or 1, depending on the value ofnumflag.

Note
This function computes the vertex separator from the edge separator using a minimum cover algorithm. This
function should be used only in ordering large graphs arising in 3D finite element applications. In general the
METIS NodeND routine should be preferred, as it produces better orderings.

36

METIS NodeND (int *n, idxtype *xadj, idxtype *adjncy, int *numflag, int *options, idxtype *perm, idxtype *iperm)

Description
This function computes fill reducing orderings of sparse matrices using the multilevel nested dissection algo-
rithm. It provides the functionality of theonmetis program.

Parameters
n The number of vertices in the graph.
xadj, adjncy

The adjacency structure of the graph as described in Section 5.1.

numflag Used to indicate which numbering scheme is used for the adjacency structure of the graph.numflag
can take the following two values:

0 C-style numbering is assumed that starts from 0

1 Fortran-style numbering is assumed that starts from 1

options This is an array of 8 integers that is used to pass parameters for the various phases of the algorithm.
If options[0]=0 then default values are used. Ifoptions[0]=1, then the remaining seven elements of
optionsare interpreted as follows:

options[1] Determines the matching type. Possible values are:

1 Random Matching (RM)

2 Heavy-Edge Matching (HEM)

3 Sorted Heavy-Edge Matching (SHEM) (Default)

Experiments have shown that all three matching schemes perform quite well. In general
SHEM is faster and RM is slower, but feel free to experiment with the other matching
schemes.

options[2] Determines the algorithm used during initial partitioning. Possible values are:

1 Edge-based region growing (Default)

2 Node-based region growing

options[3] Determines the algorithm used for refinement. Possible values are:

1 Two-sided node FM refinement

2 One-sided node FM refinement (Default)

One-sided FM refinement is faster than two-sided, but in some cases two-sided refine-
ment may produce better orderings. Feel free to experiment with this option.

options[4] Used for debugging purposes. Always set it to 0 (Default).

options[5] Used to select whether or not to compress the graph and to order connected components
separately. The possible values and their meaning are as follows.

0 Do not try to compress the graph and do not order each connected component
separately.

1 Try to compress the graph. (A compressed graph is actually formed if the size of
the graph can be reduced by at least 15%) (Default).

2 Order each connected component of the graph separately. This option is partic-
ularly useful when after a few levels of nested dissection, the graph breaks up in
many smaller disconnected subgraphs. This is true for certain types of LP matrices.

3 Try to compress the graph and also order each connected component separately.

37

options[6] Used to control whether or not the ordering algorithm should remove any vertices with
high degree (i.e., dense columns). This is particularly helpful for certain classes of LP
matrices, in which there a few vertices that are connected to many other vertices. By
removing these vertices prior to ordering, the quality and the amount of time required
to do the ordering improves. The possible values are as follows:

0 Do not remove any vertices (Default)

x Wherex > 0, instructs the algorithm to remove any vertices whose degree is
greater than 0.1 ∗ x ∗ (average degree). For example ifx = 40, and the average
degree is 5, then the algorithm will remove all vertices with degree greater than 20.
The vertices that are removed are ordered last (i.e., they are automatically placed in
the top-level separator). Good values are often in the range of 60 to 200 (i.e., 6 to
20 times more than the average).

options[7] Used to determine how many separators to find at each step of nested dissection. The
larger the number of separators found at each step, the higher the runtime and better the
quality is (in general). The default value is 1, unless the graph has been compressed by
more than a factor of 2, in which case it becomes 2. Reasonable values are in the range
of 1 to 5. For most problems, a value of 5 increases the runtime by a factor of 3.

perm, iperm
These are vectors, each of sizen. Upon successful completion, they store the fill-reducing permu-
tation and inverse-permutation. LetA be the original matrix andA′ be the permuted matrix. The
arrayspermandipermare defined as follows. Row (column)i of A′ is the perm[i] row (column) of
A, and row (column)i of A is the iperm[i] row (column) ofA′. The numbering of this vector starts
from either 0 or 1, depending on the value ofnumflag.

Note
This function computes the vertex separator directly by using a multilevel algorithm. This function produces
high quality orderings and should be preferred overMETIS EdgeND.

38

METIS NodeWND (int *n, idxtype *xadj, idxtype *adjncy, idxtype *vwgt, int *numflag, int *options,
idxtype *perm, idxtype *iperm)

Description
This function computes fill reducing orderings of sparse matrices using the multilevel nested dissection algo-
rithm. It is similar toMETIS NodeWND but it assumes that the compression has been already performed prior
to calling this routine. It is particularly suited for ordering very large matrices in which the compressed matrix
is known a priori.

Parameters
n The number of vertices in the graph.
xadj, adjncy

The adjacency structure of the graph as described in Section 5.1.

vwgt The weight of the vertices.

numflag Used to indicate which numbering scheme is used for the adjacency structure of the graph.numflag
can take the following two values:

0 C-style numbering is assumed that starts from 0

1 Fortran-style numbering is assumed that starts from 1

options This is an array of 5 integers that is used to pass parameters for the various phases of the algorithm.
If options[0]=0 then default values are used. Ifoptions[0]=1, then the remaining four elements of
optionsare interpreted as follows:

options[1] Determines the matching type. Possible values are:

1 Random Matching (RM)

2 Heavy-Edge Matching (HEM)

3 Sorted Heavy-Edge Matching (SHEM) (Default)

Experiments have shown that all three matching schemes perform quite well. In general
SHEM is faster and RM is slower, but feel free to experiment with the other matching
schemes.

options[2] Determines the algorithm used during initial partitioning. Possible values are:

1 Edge-based region growing (Default)

2 Node-based region growing

options[3] Determines the algorithm used for refinement. Possible values are:

1 Two-sided node FM refinement

2 One-sided node FM refinement (Default)

One-sided FM refinement is faster than two-sided, but in some cases two-sided refine-
ment may produce better orderings. Feel free to experiment with this option.

options[4] Used for debugging purposes. Always set it to 0 (Default).

perm, iperm
These are vectors, each of sizen. Upon successful completion, they store the fill-reducing permu-
tation and inverse-permutation. LetA be the original matrix andA′ be the permuted matrix. The
arrayspermandipermare defined as follows. Row (column)i of A′ is the perm[i] row (column) of
A, and row (column)i of A is the iperm[i] row (column) ofA′. The numbering of this vector starts
from either 0 or 1, depending on the value ofnumflag.

39

5.7 Auxiliary Routines

METIS MeshToNodal (int *ne, int *nn, idxtype *elmnts, int *etype, int *numflag, idxtype *nxadj, idxtype *nadjncy)

Description
This function is used to convert a mesh into a nodal graph, in a format suitable forMETISlib. It provides the
function of themesh2nodal program.

Parameters
ne The number of elements in the mesh.

nn The number of nodes in the mesh.

elmnts The element node array storing the mesh as described in Section 5.2.

etype Indicates the type of the elements in the mesh.etypecan take the following values:

1 The elements are triangles.

2 The elements are tetrahedra.

3 The elements are hexahedra (bricks).

4 The elements are quadrilaterals.

numflag Used to indicate which numbering scheme is used for the element node array.numflagcan take the
following two values:

0 C-style numbering is assumed that starts from 0

1 Fortran-style numbering is assumed that starts from 1

nxadj, nadjncy
These arrays store the adjacency structure of the nodal graph. The user must provide arrays that
are sufficiently large to store the graph. The size of arraynxadj is nn+1 where the size ofnadjncy
depends on the type of the mesh. For triangular-element and hexahedra-element meshes,nadjncy
should be at least 6∗ nn, for quadrilateral-element meshes,nadjncyshould be at least 4∗ nn, and for
tetrahedra-element meshes,nadjncyshould be at least 15∗ nn.

Note
The nodal graph is defined as the graph in which each vertex of the graph corresponds to a node in the mesh,
and two vertices are connected by an edge if the corresponding nodes a connected by an element.

40

METIS MeshToDual (int *ne, int *nn, idxtype *elmnts, int *etype, int *numflag, idxtype *dxadj, idxtype *dadjncy)

Description
This function is used to convert a mesh into a dual graph, in a format suitable forMETISlib. It provides the
function of themesh2nodal program.

Parameters
ne The number of elements in the mesh.

nn The number of nodes in the mesh.

elmnts The element node array storing the mesh as described in Section 5.2.

etype Indicates the type of the elements in the mesh.etypecan take the following values:

1 The elements are triangles.

2 The elements are tetrahedra.

3 The elements are hexahedra (bricks).

4 The elements are quadrilaterals.

numflag Used to indicate which numbering scheme is used for the element node array.numflagcan take the
following two values:

0 C-style numbering is assumed that starts from 0

1 Fortran-style numbering is assumed that starts from 1

dxadj, dadjncy
These arrays store the adjacency structure of the dual graph. The user must provide arrays that
are sufficiently large to store the graph. The size of arraydxadj is ne+1 where the size ofdadjncy
depends on the type of the mesh. For triangular-element meshes,dadjncyshould be at least 3∗ ne,
for tetrahedra-element and quadrilateral-element meshes,dadjncyshould be at least 4∗ ne, and for
hexahedra-element meshes,dadjncyshould be at least 6∗ ne.

Note
The dual graph is defined as the graph in which each vertex of the graph corresponds to an element in the mesh,
and two vertices are connected by an edge if the corresponding elements share a face.

41

METIS EstimateMemory (int *n, idxtype *xadj, int *adjncy, int *numflag, int *optype, int *nbytes)

Description
This function is used to estimate the amount of memory that will be used byMETIS. Even though,METIS dynam-
ically allocates the amount of memory that it needs, this function can be useful in determining if the amount of
memory in the system is sufficient forMETIS.

Parameters
n The number of vertices in the graph.

xadj, adjncy
The adjacency structure of the graph as described in Section 5.1.

numflag Used to indicate which numbering scheme is used for the element node array.numflagcan take the
following two values:

0 C-style numbering is assumed that starts from 0

1 Fortran-style numbering is assumed that starts from 1

optype Indicates the operation for which the memory will be estimated.optypecan take the following values:

1 Estimates the memory needed forMETIS PartGraphRecursive andMETIS WPartGraphRecursive.

2 Estimates the memory needed forMETIS PartGraphKway andMETIS WPartGraphKway.

3 Estimates the memory needed forMETIS EdgeND.

4 Estimates the memory needed forMETIS NodeND, but it does not take into account memory
saved due to compression.

nbytes Upon return,nbytesstores an estimate on the number of bytes thatMETIS requires.

42

5.8 C and Fortran Support

The various routines inMETISlib can be called from either C or Fortran programs. Using C withMETISlib is quite
straightforward (asMETIS is written entirely in C). However,METISlib fully supports Fortran as well. This support
comes in three forms.

1. All the scalar arguments in the routines are passed by reference to facilitate Fortran programs.

2. All the routines take a parameter callednumflagindicating whether or not the numbering of the graph or mesh
starts from 0 or 1. In C programs numbering usually starts from 0, whereas in Fortran programs numbering
starts from 1.

3. METISlib incorporates alternative names for each of the routines to facilitate linking the library with Fortran pro-
grams. In particular, for every functionMETISlib provides three additional names, one all capital, one all lower
case, and one all lower case with ‘’ appended to it. For example, forMETIS PartGraphKway, METISlib pro-
videsMETIS PARTGRAPHKWAY, metis partgraphkway, andmetis partgraphkway . These extra names
allow the library to be directly linked into Fortran programs on a wide range of architectures including Cray,
SGI, and HP. If you still encounter problems linking with the library let us know so we can include appropriate
support.

43

6 System Requirements and Contact Information

The distribution ofMETIS contains a number of files, that total to over 22,000 lines of code. It is written entirely in
ANSI C, and is portable on most Unix systems that have an ANSI C compiler (the GNU C compiler will do). It has
been extensively tested on AIX, SunOS, Solaris, IRIX, Linux, HP-UX, BSD, and Unicos. Instructions on how to build
and installMETIS can be found in the fileINSTALL of the distribution.

Even though,METIS contains no known bugs, it does not mean that all of its bugs have been found and fixed. If you
find any problems, please send email tometis@cs.umn.edu, with a brief description of the problem you have found.
Also, any future updates toMETIS will be made available on WWW athttp://www.cs.umn.edu/˜metis.

References
[1] Stephen T. Barnard and Horst D. Simon. A fast multilevel implementation of recursive spectral bisection for partitioning

unstructured problems. InProceedings of the sixth SIAM conference on Parallel Processing for Scientific Computing, pages
711–718, 1993.

[2] A. George and J. W.-H. Liu.Computer Solution of Large Sparse Positive Definite Systems. Prentice-Hall, Englewood Cliffs,
NJ, 1981.

[3] Anshul Gupta, George Karypis, and Vipin Kumar. Highly scalable parallel algorithms for sparse matrix factoriza-
tion. IEEE Transactions on Parallel and Distributed Systems, 8(5):502–520, May 1997. Available on WWW at URL
http://www.cs.umn.edu/˜karypis.

[4] Bruce Hendrickson and Robert Leland. The chaco user’s guide, version 1.0. Technical Report SAND93-2339, Sandia National
Laboratories, 1993.

[5] Bruce Hendrickson and Robert Leland. A multilevel algorithm for partitioning graphs. Technical Report SAND93-1301,
Sandia National Laboratories, 1993.

[6] G. Karypis and V. Kumar. Multilevel algorithms for multi-constraint graph partitioning. Technical Report TR 98-019,
Department of Computer Science, University of Minnesota, 1998.

[7] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for irregular graphs.Journal of Parallel and Distributed
Computing, 48(1):96–129, 1998. Also available on WWW at URL http://www.cs.umn.edu/˜karypis.

[8] G. Karypis and V. Kumar. A fast and highly quality multilevel scheme for partitioning irregular graphs.SIAM Journal on
Scientific Computing, 1998 (to appear). Also available on WWW at URL http://www.cs.umn.edu/˜karypis. A short version
appears in Intl. Conf. on Parallel Processing 1995.

[9] George Karypis, Rajat Aggarwal, Vipin Kumar, and Shashi Shekhar. Multilevel hypergraph partitioning: Application in vlsi
domain. InProceedings of the Design and Automation Conference, 1997.

[10] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis.Introduction to Parallel Computing: Design and Analysis
of Algorithms. Benjamin/Cummings Publishing Company, Redwood City, CA, 1994.

44

